Theory Sum_Topology
section‹Disjoint sum of arbitarily many spaces›
theory Sum_Topology
imports Abstract_Topology
begin
definition sum_topology :: "('a ⇒ 'b topology) ⇒ 'a set ⇒ ('a × 'b) topology" where
"sum_topology X I ≡
topology (λU. U ⊆ Sigma I (topspace ∘ X) ∧ (∀i ∈ I. openin (X i) {x. (i,x) ∈ U}))"
lemma is_sum_topology: "istopology (λU. U ⊆ Sigma I (topspace ∘ X) ∧ (∀i∈I. openin (X i) {x. (i, x) ∈ U}))"
proof -
have 1: "{x. (i, x) ∈ S ∩ T} = {x. (i, x) ∈ S} ∩ {x::'b. (i, x) ∈ T}" for S T and i::'a
by auto
have 2: "{x. (i, x) ∈ ⋃ 𝒦} = (⋃K∈𝒦. {x::'b. (i, x) ∈ K})" for 𝒦 and i::'a
by auto
show ?thesis
unfolding istopology_def 1 2 by blast
qed
lemma openin_sum_topology:
"openin (sum_topology X I) U ⟷
U ⊆ Sigma I (topspace ∘ X) ∧ (∀i ∈ I. openin (X i) {x. (i,x) ∈ U})"
by (auto simp: sum_topology_def is_sum_topology)
lemma openin_disjoint_union:
"openin (sum_topology X I) (Sigma I U) ⟷ (∀i ∈ I. openin (X i) (U i))"
using openin_subset by (force simp: openin_sum_topology)
lemma topspace_sum_topology [simp]:
"topspace(sum_topology X I) = Sigma I (topspace ∘ X)"
by (metis comp_apply openin_disjoint_union openin_subset openin_sum_topology openin_topspace subset_antisym)
lemma openin_sum_topology_alt:
"openin (sum_topology X I) U ⟷ (∃T. U = Sigma I T ∧ (∀i ∈ I. openin (X i) (T i)))"
by (bestsimp simp: openin_sum_topology dest: openin_subset)
lemma forall_openin_sum_topology:
"(∀U. openin (sum_topology X I) U ⟶ P U) ⟷ (∀T. (∀i ∈ I. openin (X i) (T i)) ⟶ P(Sigma I T))"
by (auto simp: openin_sum_topology_alt)
lemma exists_openin_sum_topology:
"(∃U. openin (sum_topology X I) U ∧ P U) ⟷
(∃T. (∀i ∈ I. openin (X i) (T i)) ∧ P(Sigma I T))"
by (auto simp: openin_sum_topology_alt)
lemma closedin_sum_topology:
"closedin (sum_topology X I) U ⟷ U ⊆ Sigma I (topspace ∘ X) ∧ (∀i ∈ I. closedin (X i) {x. (i,x) ∈ U})"
(is "?lhs = ?rhs")
proof
assume L: ?lhs
then have U: "U ⊆ Sigma I (topspace ∘ X)"
using closedin_subset by fastforce
then have "∀i∈I. {x. (i, x) ∈ U} ⊆ topspace (X i)"
by fastforce
moreover have "openin (X i) (topspace (X i) - {x. (i, x) ∈ U})" if "i∈I" for i
apply (subst openin_subopen)
using L that unfolding closedin_def openin_sum_topology
by (bestsimp simp: o_def subset_iff)
ultimately show ?rhs
by (simp add: U closedin_def)
next
assume R: ?rhs
then have "openin (X i) {x. (i, x) ∈ topspace (sum_topology X I) - U}" if "i∈I" for i
apply (subst openin_subopen)
using that unfolding closedin_def openin_sum_topology
by (bestsimp simp: o_def subset_iff)
then show ?lhs
by (simp add: R closedin_def openin_sum_topology)
qed
lemma closedin_disjoint_union:
"closedin (sum_topology X I) (Sigma I U) ⟷ (∀i ∈ I. closedin (X i) (U i))"
using closedin_subset by (force simp: closedin_sum_topology)
lemma closedin_sum_topology_alt:
"closedin (sum_topology X I) U ⟷ (∃T. U = Sigma I T ∧ (∀i ∈ I. closedin (X i) (T i)))"
using closedin_subset unfolding closedin_sum_topology by auto blast
lemma forall_closedin_sum_topology:
"(∀U. closedin (sum_topology X I) U ⟶ P U) ⟷
(∀t. (∀i ∈ I. closedin (X i) (t i)) ⟶ P(Sigma I t))"
by (metis closedin_sum_topology_alt)
lemma exists_closedin_sum_topology:
"(∃U. closedin (sum_topology X I) U ∧ P U) ⟷
(∃T. (∀i ∈ I. closedin (X i) (T i)) ∧ P(Sigma I T))"
by (simp add: closedin_sum_topology_alt) blast
lemma open_map_component_injection:
"i ∈ I ⟹ open_map (X i) (sum_topology X I) (λx. (i,x))"
unfolding open_map_def openin_sum_topology
using openin_subset openin_subopen by (force simp: image_iff)
lemma closed_map_component_injection:
assumes "i ∈ I"
shows "closed_map(X i) (sum_topology X I) (λx. (i,x))"
proof -
have "closedin (X j) {x. j = i ∧ x ∈ U}"
if "⋀U S. closedin U S ⟹ S ⊆ topspace U" and "closedin (X i) U" and "j ∈ I" for U j
using that by (cases "j=i") auto
then show ?thesis
using closedin_subset assms by (force simp: closed_map_def closedin_sum_topology image_iff)
qed
lemma continuous_map_component_injection:
"i ∈ I ⟹ continuous_map(X i) (sum_topology X I) (λx. (i,x))"
apply (clarsimp simp: continuous_map_def openin_sum_topology)
by (smt (verit, best) Collect_cong mem_Collect_eq openin_subset subsetD)
lemma subtopology_sum_topology:
"subtopology (sum_topology X I) (Sigma I S) =
sum_topology (λi. subtopology (X i) (S i)) I"
unfolding topology_eq
proof (intro strip iffI)
fix T
assume *: "openin (subtopology (sum_topology X I) (Sigma I S)) T"
then obtain U where U: "∀i∈I. openin (X i) (U i) ∧ T = Sigma I U ∩ Sigma I S"
by (auto simp: openin_subtopology openin_sum_topology_alt)
have "T = (SIGMA i:I. U i ∩ S i)"
proof
show "T ⊆ (SIGMA i:I. U i ∩ S i)"
by (metis "*" SigmaE Sigma_Int_distrib2 U openin_imp_subset subset_iff)
show "(SIGMA i:I. U i ∩ S i) ⊆ T"
using U by fastforce
qed
then show "openin (sum_topology (λi. subtopology (X i) (S i)) I) T"
by (simp add: U openin_disjoint_union openin_subtopology_Int)
next
fix T
assume *: "openin (sum_topology (λi. subtopology (X i) (S i)) I) T"
then obtain U where "∀i∈I. ∃T. openin (X i) T ∧ U i = T ∩ S i" and Teq: "T = Sigma I U"
by (auto simp: openin_subtopology openin_sum_topology_alt)
then obtain B where "⋀i. i∈I ⟹ openin (X i) (B i) ∧ U i = B i ∩ S i"
by metis
then show "openin (subtopology (sum_topology X I) (Sigma I S)) T"
by (auto simp: openin_subtopology openin_sum_topology_alt Teq)
qed
lemma embedding_map_component_injection:
"i ∈ I ⟹ embedding_map (X i) (sum_topology X I) (λx. (i,x))"
by (metis injective_open_imp_embedding_map continuous_map_component_injection
open_map_component_injection inj_onI prod.inject)
lemma topological_property_of_sum_component:
assumes major: "P (sum_topology X I)"
and minor: "⋀X S. ⟦P X; closedin X S; openin X S⟧ ⟹ P(subtopology X S)"
and PQ: "⋀X Y. X homeomorphic_space Y ⟹ (P X ⟷ Q Y)"
shows "(∀i ∈ I. Q(X i))"
proof -
have "Q(X i)" if "i ∈ I" for i
proof -
have "P(subtopology (sum_topology X I) (Pair i ` topspace (X i)))"
by (meson closed_map_component_injection closed_map_def closedin_topspace major minor open_map_component_injection open_map_def openin_topspace that)
then show ?thesis
by (metis PQ embedding_map_component_injection embedding_map_imp_homeomorphic_space homeomorphic_space_sym that)
qed
then show ?thesis by metis
qed
end