Theory Exponent
theory Exponent
imports Main "HOL-Computational_Algebra.Primes"
begin
section ‹Sylow's Theorem›
text ‹The Combinatorial Argument Underlying the First Sylow Theorem›
text‹needed in this form to prove Sylow's theorem›
corollary (in algebraic_semidom) div_combine:
"⟦prime_elem p; ¬ p ^ Suc r dvd n; p ^ (a + r) dvd n * k⟧ ⟹ p ^ a dvd k"
by (metis add_Suc_right mult.commute prime_elem_power_dvd_cases)
lemma exponent_p_a_m_k_equation:
fixes p :: nat
assumes "0 < m" "0 < k" "p ≠ 0" "k < p^a"
shows "multiplicity p (p^a * m - k) = multiplicity p (p^a - k)"
proof (rule multiplicity_cong [OF iffI])
fix r
assume *: "p ^ r dvd p ^ a * m - k"
show "p ^ r dvd p ^ a - k"
proof -
have "k ≤ p ^ a * m" using assms
by (meson nat_dvd_not_less dvd_triv_left leI mult_pos_pos order.strict_trans)
then have "r ≤ a"
by (meson "*" ‹0 < k› ‹k < p^a› dvd_diffD1 dvd_triv_left leI less_imp_le_nat nat_dvd_not_less power_le_dvd)
then have "p^r dvd p^a * m" by (simp add: le_imp_power_dvd)
thus ?thesis
by (meson ‹k ≤ p ^ a * m› ‹r ≤ a› * dvd_diffD1 dvd_diff_nat le_imp_power_dvd)
qed
next
fix r
assume *: "p ^ r dvd p ^ a - k"
with assms have "r ≤ a"
by (metis diff_diff_cancel less_imp_le_nat nat_dvd_not_less nat_le_linear power_le_dvd zero_less_diff)
show "p ^ r dvd p ^ a * m - k"
proof -
have "p^r dvd p^a*m"
by (simp add: ‹r ≤ a› le_imp_power_dvd)
then show ?thesis
by (meson assms * dvd_diffD1 dvd_diff_nat le_imp_power_dvd less_imp_le_nat ‹r ≤ a›)
qed
qed
lemma p_not_div_choose_lemma:
fixes p :: nat
assumes eeq: "⋀i. Suc i < K ⟹ multiplicity p (Suc i) = multiplicity p (Suc (j + i))"
and "k < K" and p: "prime p"
shows "multiplicity p (j + k choose k) = 0"
using ‹k < K›
proof (induction k)
case 0 then show ?case by simp
next
case (Suc k)
then have *: "(Suc (j+k) choose Suc k) > 0" by simp
then have "multiplicity p ((Suc (j+k) choose Suc k) * Suc k) = multiplicity p (Suc k)"
by (subst Suc_times_binomial_eq [symmetric], subst prime_elem_multiplicity_mult_distrib)
(insert p Suc.prems, simp_all add: eeq [symmetric] Suc.IH)
with p * show ?case
by (subst (asm) prime_elem_multiplicity_mult_distrib) simp_all
qed
text‹The lemma above, with two changes of variables›
lemma p_not_div_choose:
assumes "k < K" and "k ≤ n"
and eeq: "⋀j. ⟦0<j; j<K⟧ ⟹ multiplicity p (n - k + (K - j)) = multiplicity p (K - j)" "prime p"
shows "multiplicity p (n choose k) = 0"
apply (rule p_not_div_choose_lemma [of K p "n-k" k, simplified assms nat_minus_add_max max_absorb1])
apply (metis add_Suc_right eeq diff_diff_cancel order_less_imp_le zero_less_Suc zero_less_diff)
apply (rule TrueI)+
done
proposition const_p_fac:
assumes "m>0" and prime: "prime p"
shows "multiplicity p (p^a * m choose p^a) = multiplicity p m"
proof-
from assms have p: "0 < p ^ a" "0 < p^a * m" "p^a ≤ p^a * m"
by (auto simp: prime_gt_0_nat)
have *: "multiplicity p ((p^a * m - 1) choose (p^a - 1)) = 0"
apply (rule p_not_div_choose [where K = "p^a"])
using p exponent_p_a_m_k_equation by (auto simp: diff_le_mono prime)
have "multiplicity p ((p ^ a * m choose p ^ a) * p ^ a) = a + multiplicity p m"
proof -
have "(p ^ a * m choose p ^ a) * p ^ a = p ^ a * m * (p ^ a * m - 1 choose (p ^ a - 1))"
(is "_ = ?rhs") using prime
by (subst times_binomial_minus1_eq [symmetric]) (auto simp: prime_gt_0_nat)
also from p have "p ^ a - Suc 0 ≤ p ^ a * m - Suc 0" by linarith
with prime * p have "multiplicity p ?rhs = multiplicity p (p ^ a * m)"
by (subst prime_elem_multiplicity_mult_distrib) auto
also have "… = a + multiplicity p m"
using prime p by (subst prime_elem_multiplicity_mult_distrib) simp_all
finally show ?thesis .
qed
then show ?thesis
using prime p by (subst (asm) prime_elem_multiplicity_mult_distrib) simp_all
qed
end