File ‹ind_syntax.ML›

(*  Title:      ZF/ind_syntax.ML
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Abstract Syntax functions for Inductive Definitions.

structure Ind_Syntax =

(*Print tracing messages during processing of "inductive" theory sections*)
val trace = Unsynchronized.ref false;

fun traceIt msg thy t =
  if !trace then (tracing (msg ^ Syntax.string_of_term_global thy t); t)
  else t;

(** Abstract syntax definitions for ZF **)

(*Creates All(%v.v:A --> P(v)) rather than Ball(A,P) *)
fun mk_all_imp (A,P) =
  let val T = Typei in
    ConstAll T for
      Abs ("v", T, Constimp for Constmem for Bound 0 A Term.betapply (P, Bound 0))

fun mk_Collect (a, D, t) = ConstCollect for D $ absfree (a, Typei) t;

(*simple error-checking in the premises of an inductive definition*)
fun chk_prem rec_hd Const_conj for _ _ =
        error"Premises may not be conjuctive"
  | chk_prem rec_hd Const_mem for t X =
        (Logic.occs(rec_hd,t) andalso error "Recursion term on left of member symbol"; ())
  | chk_prem rec_hd t =
        (Logic.occs(rec_hd,t) andalso error "Recursion term in side formula"; ());

(*Return the conclusion of a rule, of the form t:X*)
fun rule_concl rl =
    let val Const_Trueprop for Const_mem for t X = Logic.strip_imp_concl rl
    in  (t,X)  end;

(*As above, but return error message if bad*)
fun rule_concl_msg sign rl = rule_concl rl
    handle Bind => error ("Ill-formed conclusion of introduction rule: " ^
                          Syntax.string_of_term_global sign rl);

(*For deriving cases rules.  CollectD2 discards the domain, which is redundant;
  read_instantiate replaces a propositional variable by a formula variable*)
val equals_CollectD =
    Rule_Insts.read_instantiate context [((("W", 0), Position.none), "Q")] ["Q"]
        (make_elim (@{thm equalityD1} RS @{thm subsetD} RS @{thm CollectD2}));

(** For datatype definitions **)

(*Constructor name, type, mixfix info;
  internal name from mixfix, datatype sets, full premises*)
type constructor_spec =
    (string * typ * mixfix) * string * term list * term list;

fun dest_mem Const_mem for x A = (x, A)
  | dest_mem _ = error "Constructor specifications must have the form x:A";

(*read a constructor specification*)
fun read_construct ctxt (id: string, sprems, syn: mixfix) =
    let val prems = map (Syntax.parse_term ctxt #> Type.constraint Typeo) sprems
          |> Syntax.check_terms ctxt
        val args = map (#1 o dest_mem) prems
        val T = (map (#2 o dest_Free) args) ---> Typei
                handle TERM _ => error
                    "Bad variable in constructor specification"
    in ((id,T,syn), id, args, prems) end;

val read_constructs = map o map o read_construct;

(*convert constructor specifications into introduction rules*)
fun mk_intr_tms sg (rec_tm, constructs) =
    fun mk_intr ((id,T,syn), name, args, prems) =
        (map make_judgment prems,
         make_judgment (Constmem $ list_comb (Const (Sign.full_bname sg name, T), args) $ rec_tm))
  in  map mk_intr constructs  end;

fun mk_all_intr_tms sg arg = flat ( (mk_intr_tms sg) arg);

fun mk_Un (t1, t2) = ConstUn for t1 t2;

(*Make a datatype's domain: form the union of its set parameters*)
fun union_params (rec_tm, cs) =
  let val (_,args) = strip_comb rec_tm
      fun is_ind arg = (type_of arg = Typei)
  in  case filter is_ind (args @ cs) of
         [] => Constzero
       | u_args => Balanced_Tree.make mk_Un u_args

(*Includes rules for succ and Pair since they are common constructions*)
val elim_rls =
  [@{thm asm_rl}, @{thm FalseE}, @{thm succ_neq_0}, @{thm sym} RS @{thm succ_neq_0},
   @{thm Pair_neq_0}, @{thm sym} RS @{thm Pair_neq_0}, @{thm Pair_inject},
   make_elim @{thm succ_inject}, @{thm refl_thin}, @{thm conjE}, @{thm exE}, @{thm disjE}];

(*From HOL/ex/meson.ML: raises exception if no rules apply -- unlike RL*)
fun tryres (th, rl::rls) = (th RS rl handle THM _ => tryres(th,rls))
  | tryres (th, []) = raise THM("tryres", 0, [th]);

fun gen_make_elim elim_rls rl =
  Drule.export_without_context (tryres (rl, elim_rls @ [revcut_rl]));

(*Turns iff rules into safe elimination rules*)
fun mk_free_SEs iffs = map (gen_make_elim [@{thm conjE}, @{thm FalseE}]) (iffs RL [@{thm iffD1}]);