Theory MetaExists

(*  Title:      ZF/Constructible/MetaExists.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

section‹The meta-existential quantifier›

theory MetaExists imports ZF begin

text‹Allows quantification over any term.  Used to quantify over classes.
Yields a proposition rather than a FOL formula.›

definition
  ex :: "(('a::{})  prop)  prop"  (binder  0) where
  "ex(P)  (Q. (x. PROP P(x)  PROP Q)  PROP Q)"

lemma meta_exI: "PROP P(x)  (x. PROP P(x))"
proof (unfold ex_def)
  assume P: "PROP P(x)"
  fix Q
  assume PQ: "x. PROP P(x)  PROP Q"
  from P show "PROP Q" by (rule PQ)
qed 

lemma meta_exE: "x. PROP P(x);  x. PROP P(x)  PROP R  PROP R"
proof (unfold ex_def)
  assume QPQ: "Q. (x. PROP P(x)  PROP Q)  PROP Q"
  assume PR: "x. PROP P(x)  PROP R"
  from PR show "PROP R" by (rule QPQ)
qed

end