Theory Winding_Number_Eval.Missing_Analysis
section ‹Some useful lemmas in analysis›
theory Missing_Analysis
imports "HOL-Analysis.Analysis"
begin
subsection ‹More about paths›
lemma pathfinish_offset[simp]:
"pathfinish (λt. g t - z) = pathfinish g - z"
unfolding pathfinish_def by simp
lemma pathstart_offset[simp]:
"pathstart (λt. g t - z) = pathstart g - z"
unfolding pathstart_def by simp
lemma pathimage_offset[simp]:
fixes g :: "_ ⇒ 'b::topological_group_add"
shows "p ∈ path_image (λt. g t - z) ⟷ p+z ∈ path_image g "
unfolding path_image_def by (auto simp:algebra_simps)
lemma path_offset[simp]:
fixes g :: "_ ⇒ 'b::topological_group_add"
shows "path (λt. g t - z) ⟷ path g"
unfolding path_def
proof
assume "continuous_on {0..1} (λt. g t - z)"
hence "continuous_on {0..1} (λt. (g t - z) + z)"
using continuous_on_add continuous_on_const by blast
then show "continuous_on {0..1} g" by auto
qed (auto intro:continuous_intros)
end