Theory SymbolicExecution
section "A symbolic execution engine"
theory SymbolicExecution
imports X86_InstructionSemantics StateCleanUp
begin
definition eq (infixl ‹≜› 50)
where "(≜) ≡ (=)"
context unknowns
begin
inductive run :: "64 word ⇒ (64 word ⇒ I) ⇒ state ⇒ state ⇒ bool"
where
"rip σ = a⇩f ⟹ fetch (rip σ) = i ⟹ σ' ≜ step i σ ⟹ run a⇩f fetch σ σ'"
| "rip σ ≠ a⇩f ⟹ fetch (rip σ) = i ⟹ run a⇩f fetch (step i σ) σ' ⟹ run a⇩f fetch σ σ'"
method fetch_and_execute = (
((rule run.intros(2),(simp (no_asm) add: state_simps;fail))
| (rule run.intros(1),(simp (no_asm) add: state_simps;fail))),
(simp (no_asm) add: state_simps),
(simp (no_asm_simp) add: step_def semantics_simps state_simps BitByte_simps),
(subst clean_state_updates[symmetric],simp (no_asm))
)
method resolve_mem_reads = (
subst mem_read_mem_write_separate,
((simp (no_asm_simp) add: separate_simps state_simps; fail)
| (rule assumptions_impI,simp (no_asm_simp),subst (asm) assumptions_conjE, erule conjE)),
(simp (no_asm_simp) add: semantics_simps state_simps BitByte_simps separate_simps)?
)
method se_step =
fetch_and_execute,
((resolve_mem_reads)+;(subst clean_state_updates[symmetric],simp (no_asm)))?,
clean_up
method se_step_no_clean =
fetch_and_execute,
((resolve_mem_reads)+;(subst clean_state_updates[symmetric],simp (no_asm)))?
end
abbreviation RSP0
where "RSP0 σ ≡ regs σ ''rsp''"
abbreviation RBP0
where "RBP0 σ ≡ regs σ ''rbp''"
abbreviation RAX0
where "RAX0 σ ≡ regs σ ''rax''"
abbreviation RBX0
where "RBX0 σ ≡ regs σ ''rbx''"
abbreviation RCX0
where "RCX0 σ ≡ regs σ ''rcx''"
abbreviation RDX0
where "RDX0 σ ≡ regs σ ''rdx''"
abbreviation RDI0
where "RDI0 σ ≡ regs σ ''rdi''"
abbreviation RSI0
where "RSI0 σ ≡ regs σ ''rsi''"
abbreviation R150
where "R150 σ ≡ regs σ ''r15''"
abbreviation R140
where "R140 σ ≡ regs σ ''r14''"
abbreviation R130
where "R130 σ ≡ regs σ ''r13''"
abbreviation R120
where "R120 σ ≡ regs σ ''r12''"
abbreviation R110
where "R110 σ ≡ regs σ ''r11''"
abbreviation R100
where "R100 σ ≡ regs σ ''r10''"
abbreviation R90
where "R90 σ ≡ regs σ ''r9''"
abbreviation R80
where "R80 σ ≡ regs σ ''r8''"
text ‹Repeat a command up to n times, in deterministic fashion (a la the REPEAT\_DETERM tactic).›
method_setup repeat_n = ‹
Scan.lift Parse.nat -- Method.text_closure >>
(fn (n,text) => fn ctxt => fn using =>
let
val ctxt_tac = Method.evaluate_runtime text ctxt using;
fun repeat_n 0 ctxt_st = Seq.make_results (Seq.succeed ctxt_st)
| repeat_n i ctxt_st = case Seq.pull (ctxt_tac ctxt_st) of
SOME (Seq.Result ctxt_st', _) => repeat_n (i-1) ctxt_st'
| _ => Seq.make_results (Seq.succeed ctxt_st)
in
repeat_n n
end)
›
end