Theory Norm_Words
section "Normalising Word Numerals"
theory Norm_Words
imports Signed_Words
begin
text ‹
Normalise word numerals, including negative ones apart from @{term "-1"}, to the
interval ‹[0..2^len_of 'a)›. Only for concrete word lengths.
›
lemma neg_numeral_eq:
‹- numeral n = (word_of_int (take_bit LENGTH('a) (- numeral n)) :: 'a::len word)›
by transfer simp
ML ‹
local
fun signed_dest_wordT \<^Type>‹word \<^Type>‹signed T›› = Word_Lib.dest_binT T
| signed_dest_wordT T = Word_Lib.dest_wordT T;
fun typ_size_of t = signed_dest_wordT (type_of (Thm.term_of t));
fun num_len \<^Const_>‹Num.Bit0 for n› = num_len n + 1
| num_len \<^Const_>‹Num.Bit1 for n› = num_len n + 1
| num_len \<^Const_>‹Num.One› = 1
| num_len \<^Const_>‹numeral _ for t› = num_len t
| num_len \<^Const_>‹uminus _ for t› = num_len t
| num_len t = raise TERM ("num_len", [t]);
val expand_pos = mk_eq @{thm num_abs_bintr};
val expand_neg = mk_eq @{thm neg_numeral_eq};
fun expand is_neg ct =
[Thm.reflexive ct, if is_neg then expand_neg else expand_pos] MRS transitive_thm;
val ss = simpset_of (@{context} |> put_simpset HOL_ss
|> fold Simplifier.add_simp @{thms take_bit_0 take_bit_numeral_bit0 take_bit_numeral_bit1 take_bit_numeral_minus_bit0 take_bit_numeral_minus_bit1
pred_numeral_simps len_num0 len_num1 len_bit0 len_bit1 len_signed
arith_simps
mult_1 mult_1_right numeral_plus_one uminus_numeral_One take_bit_numeral_minus_1_eq
power_numeral Num.pow.simps Num.sqr.simps diff_numeral_special
word_of_int_numeral word_of_int_1});
fun norm ctxt = Simplifier.rewrite (put_simpset ss ctxt);
in
fun unsigned_norm is_neg _ ctxt ct =
(if num_len (Thm.term_of ct) > typ_size_of ct orelse is_neg then
SOME ((expand is_neg then_conv norm ctxt) ct)
else NONE)
handle TERM ("num_len", _) => NONE
| TYPE ("dest_binT", _, _) => NONE
end
›
simproc_setup
unsigned_norm (‹numeral n :: 'a::len word›) = ‹unsigned_norm false›
simproc_setup
unsigned_norm_neg0 (‹- numeral (num.Bit0 n) :: 'a::len word›) = ‹unsigned_norm true›
simproc_setup
unsigned_norm_neg1 (‹- numeral (num.Bit1 n) :: 'a::len word›) = ‹unsigned_norm true›
lemma minus_one_norm:
‹(- 1 :: 'a :: len word) = word_of_nat (2 ^ LENGTH('a) - 1)›
by simp
lemmas minus_one_norm_num =
minus_one_norm [where 'a="'b::len bit0"] minus_one_norm [where 'a="'b::len0 bit1"]
context
begin
declaration ‹fn _ => Context.mapping I (put_simpset HOL_ss)›
context
notes [[simproc add: unsigned_norm unsigned_norm_neg0 unsigned_norm_neg1]]
begin
private lemma "- 2 = (13 + 1 :: 'a::len word)"
using numeral_plus_one [simp]
apply simp
oops
private lemma "7 = (3 :: 2 word)"
by simp
private lemma "- 2 = (22 :: 3 word)"
by simp
private lemma "- 2 = (0xFFFFFFFE :: 32 word)"
by simp
private lemma "- 2 = (0xFFFFFFFE :: 32 signed word)"
by simp
end
end
text ‹
We leave @{term "-1"} untouched by default, because it is often useful
and its normal form can be large.
To include it in the normalisation, add @{thm [source] minus_one_norm_num}.
The additional normalisation is restricted to concrete numeral word lengths,
like the rest.
›
context
notes minus_one_norm_num [simp]
begin
private lemma "f (- 1) = f (15 :: 4 word)"
by simp
private lemma "f (- 1) = f (7 :: 3 word)"
by simp
private lemma "f (- 1) = f (0xFFFF :: 16 word)"
by simp
private lemma "f (- 1) = f (0xFFFF + 1 :: 'a::len word)"
apply simp
oops
end
end