Theory Bitwise
theory Bitwise
imports
"HOL-Library.Word"
More_Arithmetic
Reversed_Bit_Lists
Bit_Shifts_Infix_Syntax
begin
text ‹Helper constants used in defining addition›
definition xor3 :: "bool ⇒ bool ⇒ bool ⇒ bool"
where "xor3 a b c = (a = (b = c))"
definition carry :: "bool ⇒ bool ⇒ bool ⇒ bool"
where "carry a b c = ((a ∧ (b ∨ c)) ∨ (b ∧ c))"
lemma carry_simps:
"carry True a b = (a ∨ b)"
"carry a True b = (a ∨ b)"
"carry a b True = (a ∨ b)"
"carry False a b = (a ∧ b)"
"carry a False b = (a ∧ b)"
"carry a b False = (a ∧ b)"
by (auto simp add: carry_def)
lemma xor3_simps:
"xor3 True a b = (a = b)"
"xor3 a True b = (a = b)"
"xor3 a b True = (a = b)"
"xor3 False a b = (a ≠ b)"
"xor3 a False b = (a ≠ b)"
"xor3 a b False = (a ≠ b)"
by (simp_all add: xor3_def)
text ‹Breaking up word equalities into equalities on their
bit lists. Equalities are generated and manipulated in the
reverse order to \<^const>‹to_bl›.›
lemma bl_word_sub: "to_bl (x - y) = to_bl (x + (- y))"
by simp
lemma rbl_word_1: "rev (to_bl (1 :: 'a::len word)) = takefill False (LENGTH('a)) [True]"
by (metis rev_rev_ident rev_singleton_conv word_1_bl word_rev_tf)
lemma rbl_word_if: "rev (to_bl (if P then x else y)) = map2 (If P) (rev (to_bl x)) (rev (to_bl y))"
by (simp add: split_def)
lemma rbl_add_carry_Cons:
"(if car then rbl_succ else id) (rbl_add (x # xs) (y # ys)) =
xor3 x y car # (if carry x y car then rbl_succ else id) (rbl_add xs ys)"
by (simp add: carry_def xor3_def)
lemma rbl_add_suc_carry_fold:
"length xs = length ys ⟹
∀car. (if car then rbl_succ else id) (rbl_add xs ys) =
(foldr (λ(x, y) res car. xor3 x y car # res (carry x y car)) (zip xs ys) (λ_. [])) car"
proof (induction rule: list_induct2)
case Nil
then show ?case by simp
next
case (Cons x xs y ys)
then show ?case
using rbl_add_carry_Cons by auto
qed
lemma to_bl_plus_carry:
"to_bl (x + y) =
rev (foldr (λ(x, y) res car. xor3 x y car # res (carry x y car))
(rev (zip (to_bl x) (to_bl y))) (λ_. []) False)"
using rbl_add_suc_carry_fold[where xs="rev (to_bl x)" and ys="rev (to_bl y)"]
by (smt (verit) id_apply length_rev word_add_rbl word_rotate.lbl_lbl zip_rev)
definition "rbl_plus cin xs ys =
foldr (λ(x, y) res car. xor3 x y car # res (carry x y car)) (zip xs ys) (λ_. []) cin"
lemma rbl_plus_simps:
"rbl_plus cin (x # xs) (y # ys) = xor3 x y cin # rbl_plus (carry x y cin) xs ys"
"rbl_plus cin [] ys = []"
"rbl_plus cin xs [] = []"
by (simp_all add: rbl_plus_def)
lemma rbl_word_plus: "rev (to_bl (x + y)) = rbl_plus False (rev (to_bl x)) (rev (to_bl y))"
by (simp add: rbl_plus_def to_bl_plus_carry zip_rev)
definition "rbl_succ2 b xs = (if b then rbl_succ xs else xs)"
lemma rbl_succ2_simps:
"rbl_succ2 b [] = []"
"rbl_succ2 b (x # xs) = (b ≠ x) # rbl_succ2 (x ∧ b) xs"
by (simp_all add: rbl_succ2_def)
lemma twos_complement: "- x = word_succ (not x)"
using arg_cong[OF word_add_not[where x=x], where f="λa. a - x + 1"]
by (simp add: word_succ_p1 word_sp_01[unfolded word_succ_p1] del: word_add_not)
lemma rbl_word_neg: "rev (to_bl (- x)) = rbl_succ2 True (map Not (rev (to_bl x)))"
for x :: ‹'a::len word›
by (simp add: twos_complement word_succ_rbl[OF refl] bl_word_not rev_map rbl_succ2_def)
lemma rbl_word_cat:
"rev (to_bl (word_cat x y :: 'a::len word)) =
takefill False (LENGTH('a)) (rev (to_bl y) @ rev (to_bl x))"
by (simp add: word_cat_bl word_rev_tf)
lemma rbl_word_slice:
"rev (to_bl (slice n w :: 'a::len word)) =
takefill False (LENGTH('a)) (drop n (rev (to_bl w)))"
by (simp add: drop_rev slice_take word_rev_tf)
lemma rbl_word_ucast:
"rev (to_bl (ucast x :: 'a::len word)) = takefill False (LENGTH('a)) (rev (to_bl x))"
by (simp add: takefill_alt ucast_bl word_rev_tf)
lemma rbl_shiftl:
"rev (to_bl (w << n)) = takefill False (size w) (replicate n False @ rev (to_bl w))"
by (simp add: bl_shiftl takefill_alt word_size rev_drop)
lemma rbl_shiftr:
"rev (to_bl (w >> n)) = takefill False (size w) (drop n (rev (to_bl w)))"
by (simp add: shiftr_slice rbl_word_slice word_size)
definition "drop_nonempty v n xs = (if n < length xs then drop n xs else [last (v # xs)])"
lemma drop_nonempty_simps:
"drop_nonempty v (Suc n) (x # xs) = drop_nonempty x n xs"
"drop_nonempty v 0 (x # xs) = (x # xs)"
"drop_nonempty v n [] = [v]"
by (simp_all add: drop_nonempty_def)
definition "takefill_last x n xs = takefill (last (x # xs)) n xs"
lemma takefill_last_simps:
"takefill_last z (Suc n) (x # xs) = x # takefill_last x n xs"
"takefill_last z 0 xs = []"
"takefill_last z n [] = replicate n z"
by (simp_all add: takefill_last_def) (simp_all add: takefill_alt)
lemma rbl_sshiftr:
"rev (to_bl (w >>> n)) = takefill_last False (size w) (drop_nonempty False n (rev (to_bl w)))"
proof (cases "n < size w")
case True
then show ?thesis
by (simp add: bl_sshiftr takefill_last_def word_size takefill_alt
rev_take last_rev drop_nonempty_def)
next
case False
then have §: "(w >>> n) = of_bl (replicate (size w) (msb w))"
by (intro word_eqI) (simp add: bit_simps word_size msb_nth)
with False show ?thesis
apply (simp add: word_size takefill_last_def takefill_alt
last_rev word_msb_alt word_rev_tf drop_nonempty_def take_Cons')
by (metis Suc_pred len_gt_0 replicate_Suc)
qed
lemma nth_word_of_int:
"bit (word_of_int x :: 'a::len word) n = (n < LENGTH('a) ∧ bit x n)"
by (simp add: bit_word_of_int_iff)
lemma nth_scast:
"bit (scast (x :: 'a::len word) :: 'b::len word) n =
(n < LENGTH('b) ∧
(if n < LENGTH('a) - 1 then bit x n
else bit x (LENGTH('a) - 1)))"
by (simp add: bit_signed_iff)
lemma rbl_word_scast:
"rev (to_bl (scast x :: 'a::len word)) = takefill_last False (LENGTH('a)) (rev (to_bl x))"
proof (rule nth_equalityI)
show "length (rev (to_bl (scast x::'a word))) = length (takefill_last False (len_of (TYPE('a)::'a itself)) (rev (to_bl x)))"
by (simp add: word_size takefill_last_def)
next
fix i
assume "i < length (rev (to_bl (scast x::'a word)))"
then show "rev (to_bl (scast x::'a word)) ! i = takefill_last False (LENGTH('a)) (rev (to_bl x)) ! i"
apply (cases "LENGTH('b)")
apply (auto simp: nth_scast takefill_last_def nth_takefill word_size rev_nth
to_bl_nth less_Suc_eq_le last_rev msb_nth simp flip: word_msb_alt)
done
qed
definition rbl_mul :: "bool list ⇒ bool list ⇒ bool list"
where "rbl_mul xs ys = foldr (λx sm. rbl_plus False (map ((∧) x) ys) (False # sm)) xs []"
lemma rbl_mul_simps:
"rbl_mul (x # xs) ys = rbl_plus False (map ((∧) x) ys) (False # rbl_mul xs ys)"
"rbl_mul [] ys = []"
by (simp_all add: rbl_mul_def)
lemma takefill_le2: "length xs ≤ n ⟹ takefill x m (takefill x n xs) = takefill x m xs"
by (simp add: takefill_alt replicate_add[symmetric])
lemma take_rbl_plus: "∀n b. take n (rbl_plus b xs ys) = rbl_plus b (take n xs) (take n ys)"
unfolding rbl_plus_def take_zip[symmetric]
by (rule list.induct) (auto simp: take_Cons' split_def)
lemma word_rbl_mul_induct:
"length xs ≤ size y ⟹
rbl_mul xs (rev (to_bl y)) = take (length xs) (rev (to_bl (of_bl (rev xs) * y)))"
for y :: "'a::len word"
proof (induct xs)
case Nil
show ?case by (simp add: rbl_mul_simps)
next
case (Cons z zs)
have rbl_word_plus': "to_bl (x + y) = rev (rbl_plus False (rev (to_bl x)) (rev (to_bl y)))"
for x y :: "'a word"
by (simp add: rbl_word_plus[symmetric])
have mult_bit: "to_bl (of_bl [z] * y) = map ((∧) z) (to_bl y)"
by (cases z) (simp cong: map_cong, simp add: map_replicate_const cong: map_cong)
have shiftl: "of_bl xs * 2 * y = (of_bl xs * y) << 1" for xs
by (simp add: push_bit_eq_mult shiftl_def)
have zip_take_triv: "⋀xs ys n. n = length ys ⟹ zip (take n xs) ys = zip xs ys"
by (rule nth_equalityI) simp_all
from Cons
have "rbl_plus False (map ((∧) z) (rev (to_bl y)))
(False # take (length zs) (rev (to_bl (of_bl (rev zs) * y)))) =
rbl_plus False
(take (Suc (length zs)) (map ((∧) z) (rev (to_bl y))))
(take (Suc (length zs)) (rev (to_bl (of_bl (rev zs) * y * 2))))"
unfolding word_size
by (simp add: rbl_plus_def zip_take_triv mult.commute [of _ 2] to_bl_double_eq take_butlast
flip: butlast_rev)
with Cons show ?case
by (simp add: trans [OF of_bl_append add.commute]
rbl_mul_simps rbl_word_plus' distrib_right mult_bit shiftl rev_map take_rbl_plus)
qed
lemma rbl_word_mul: "rev (to_bl (x * y)) = rbl_mul (rev (to_bl x)) (rev (to_bl y))"
for x :: "'a::len word"
using word_rbl_mul_induct[where xs="rev (to_bl x)" and y=y] by (simp add: word_size)
text ‹Breaking up inequalities into bitlist properties.›
definition
"rev_bl_order F xs ys =
(length xs = length ys ∧
((xs = ys ∧ F)
∨ (∃n < length xs. drop (Suc n) xs = drop (Suc n) ys
∧ ¬ xs ! n ∧ ys ! n)))"
lemma rev_bl_order_simps:
"rev_bl_order F [] [] = F"
"rev_bl_order F (x # xs) (y # ys) = rev_bl_order ((y ∧ ¬ x) ∨ ((y ∨ ¬ x) ∧ F)) xs ys"
apply (simp_all add: rev_bl_order_def)
using less_Suc_eq_0_disj by fastforce
lemma rev_bl_order_rev_simp:
"length xs = length ys ⟹
rev_bl_order F (xs @ [x]) (ys @ [y]) = ((y ∧ ¬ x) ∨ ((y ∨ ¬ x) ∧ rev_bl_order F xs ys))"
by (induct arbitrary: F rule: list_induct2) (auto simp: rev_bl_order_simps)
lemma rev_bl_order_bl_to_bin:
"length xs = length ys ⟹
rev_bl_order True xs ys = (bl_to_bin (rev xs) ≤ bl_to_bin (rev ys)) ∧
rev_bl_order False xs ys = (bl_to_bin (rev xs) < bl_to_bin (rev ys))"
proof (induct xs ys rule: list_induct2)
case Nil
then show ?case
by (auto simp: rev_bl_order_simps(1))
next
case (Cons x xs y ys)
then show ?case
apply (simp add: rev_bl_order_simps bl_to_bin_app_cat)
apply (auto simp add: bl_to_bin_def add1_zle_eq concat_bit_Suc)
done
qed
lemma word_le_rbl: "x ≤ y ⟷ rev_bl_order True (rev (to_bl x)) (rev (to_bl y))"
for x y :: "'a::len word"
by (simp add: rev_bl_order_bl_to_bin word_le_def)
lemma word_less_rbl: "x < y ⟷ rev_bl_order False (rev (to_bl x)) (rev (to_bl y))"
for x y :: "'a::len word"
by (simp add: word_less_alt rev_bl_order_bl_to_bin)
definition "map_last f xs = (if xs = [] then [] else butlast xs @ [f (last xs)])"
lemma map_last_simps:
"map_last f [] = []"
"map_last f [x] = [f x]"
"map_last f (x # y # zs) = x # map_last f (y # zs)"
by (simp_all add: map_last_def)
lemma word_sle_rbl:
"x <=s y ⟷ rev_bl_order True (map_last Not (rev (to_bl x))) (map_last Not (rev (to_bl y)))"
proof -
have "length (to_bl x) = length (to_bl y)"
by auto
with word_msb_alt[where w=x] word_msb_alt[where w=y]
show ?thesis
unfolding word_sle_msb_le word_le_rbl
by (cases "to_bl x"; cases "to_bl y"; auto simp: map_last_def rev_bl_order_rev_simp)
qed
lemma word_sless_rbl:
"x <s y ⟷ rev_bl_order False (map_last Not (rev (to_bl x))) (map_last Not (rev (to_bl y)))"
by (metis (no_types, lifting) rev_bl_order_def signed.less_le signed.not_less word_sle_rbl)
text ‹Lemmas for unpacking \<^term>‹rev (to_bl n)› for numerals n and also
for irreducible values and expressions.›
lemma rev_bin_to_bl_simps:
"rev (bin_to_bl 0 x) = []"
"rev (bin_to_bl (Suc n) (numeral (num.Bit0 nm))) = False # rev (bin_to_bl n (numeral nm))"
"rev (bin_to_bl (Suc n) (numeral (num.Bit1 nm))) = True # rev (bin_to_bl n (numeral nm))"
"rev (bin_to_bl (Suc n) (numeral (num.One))) = True # replicate n False"
"rev (bin_to_bl (Suc n) (- numeral (num.Bit0 nm))) = False # rev (bin_to_bl n (- numeral nm))"
"rev (bin_to_bl (Suc n) (- numeral (num.Bit1 nm))) =
True # rev (bin_to_bl n (- numeral (nm + num.One)))"
"rev (bin_to_bl (Suc n) (- numeral (num.One))) = True # replicate n True"
"rev (bin_to_bl (Suc n) (- numeral (num.Bit0 nm + num.One))) =
True # rev (bin_to_bl n (- numeral (nm + num.One)))"
"rev (bin_to_bl (Suc n) (- numeral (num.Bit1 nm + num.One))) =
False # rev (bin_to_bl n (- numeral (nm + num.One)))"
"rev (bin_to_bl (Suc n) (- numeral (num.One + num.One))) =
False # rev (bin_to_bl n (- numeral num.One))"
by (simp_all add: bin_to_bl_aux_append bin_to_bl_zero_aux bin_to_bl_minus1_aux replicate_append_same)
lemma to_bl_upt: "to_bl x = rev (map (bit x) [0 ..< size x])"
by (simp add: to_bl_eq_rev word_size rev_map)
lemma rev_to_bl_upt: "rev (to_bl x) = map (bit x) [0 ..< size x]"
by (simp add: to_bl_upt)
lemma upt_eq_list_intros:
"j ≤ i ⟹ [i ..< j] = []"
"i = x ⟹ x < j ⟹ [x + 1 ..< j] = xs ⟹ [i ..< j] = (x # xs)"
by (simp_all add: upt_eq_Cons_conv)
text ‹Tactic definition›
lemma if_bool_simps:
"If p True y = (p ∨ y) ∧ If p False y = (¬ p ∧ y) ∧
If p y True = (p ⟶ y) ∧ If p y False = (p ∧ y)"
by auto
ML ‹
structure Word_Bitwise_Tac =
struct
val word_ss = simpset_of \<^theory_context>‹Word›;
fun mk_nat_clist ns =
fold_rev (Thm.mk_binop \<^cterm>‹Cons :: nat ⇒ _›)
ns \<^cterm>‹[] :: nat list›;
fun upt_conv ctxt ct =
case Thm.term_of ct of
\<^Const_>‹upt for n m› =>
let
val (i, j) = apply2 (snd o HOLogic.dest_number) (n, m);
val ns = map (Numeral.mk_cnumber \<^ctyp>‹nat›) (i upto (j - 1))
|> mk_nat_clist;
val prop =
Thm.mk_binop \<^cterm>‹(=) :: nat list ⇒ _› ct ns
|> Thm.apply \<^cterm>‹Trueprop›;
in
try (fn () =>
Goal.prove_internal ctxt [] prop
(K (REPEAT_DETERM (resolve_tac ctxt @{thms upt_eq_list_intros} 1
ORELSE simp_tac (put_simpset word_ss ctxt) 1))) |> mk_meta_eq) ()
end
| _ => NONE;
val expand_upt_simproc = \<^simproc_setup>‹passive expand_upt ("upt x y") = ‹K upt_conv››;
fun word_len_simproc_fn ctxt ct =
(case Thm.term_of ct of
\<^Const_>‹len_of _ for t› =>
(let
val T = fastype_of t |> dest_Type |> snd |> the_single
val n = Numeral.mk_cnumber \<^ctyp>‹nat› (Word_Lib.dest_binT T);
val prop =
Thm.mk_binop \<^cterm>‹(=) :: nat ⇒ _› ct n
|> Thm.apply \<^cterm>‹Trueprop›;
in
Goal.prove_internal ctxt [] prop (K (simp_tac (put_simpset word_ss ctxt) 1))
|> mk_meta_eq |> SOME
end handle TERM _ => NONE | TYPE _ => NONE)
| _ => NONE);
val word_len_simproc =
\<^simproc_setup>‹passive word_len ("len_of x") = ‹K word_len_simproc_fn››;
fun nat_get_Suc_simproc_fn n_sucs ctxt ct =
let
val (f, arg) = dest_comb (Thm.term_of ct);
val n =
(case arg of \<^term>‹nat› $ n => n | n => n)
|> HOLogic.dest_number |> snd;
val (i, j) = if n > n_sucs then (n_sucs, n - n_sucs) else (n, 0);
val arg' = funpow i HOLogic.mk_Suc (HOLogic.mk_number \<^typ>‹nat› j);
val _ = if arg = arg' then raise TERM ("", []) else ();
fun propfn g =
HOLogic.mk_eq (g arg, g arg')
|> HOLogic.mk_Trueprop |> Thm.cterm_of ctxt;
val eq1 =
Goal.prove_internal ctxt [] (propfn I)
(K (simp_tac (put_simpset word_ss ctxt) 1));
in
Goal.prove_internal ctxt [] (propfn (curry (op $) f))
(K (simp_tac (put_simpset HOL_ss ctxt addsimps [eq1]) 1))
|> mk_meta_eq |> SOME
end handle TERM _ => NONE;
fun nat_get_Suc_simproc n_sucs ts =
Simplifier.make_simproc \<^context>
{name = "nat_get_Suc",
kind = Simproc,
lhss = map (fn t => t $ \<^term>‹n :: nat›) ts,
proc = K (nat_get_Suc_simproc_fn n_sucs),
identifier = []};
val no_split_ss =
simpset_of (put_simpset HOL_ss \<^context>
|> Splitter.del_split @{thm if_split});
val expand_word_eq_sss =
(simpset_of (put_simpset HOL_basic_ss \<^context> addsimps
@{thms word_eq_rbl_eq word_le_rbl word_less_rbl word_sle_rbl word_sless_rbl}),
map simpset_of [
put_simpset no_split_ss \<^context> addsimps
@{thms rbl_word_plus rbl_word_and rbl_word_or rbl_word_not
rbl_word_neg bl_word_sub rbl_word_xor
rbl_word_cat rbl_word_slice rbl_word_scast
rbl_word_ucast rbl_shiftl rbl_shiftr rbl_sshiftr
rbl_word_if},
put_simpset no_split_ss \<^context> addsimps
@{thms to_bl_numeral to_bl_neg_numeral to_bl_0 rbl_word_1},
put_simpset no_split_ss \<^context> addsimps
@{thms rev_rev_ident rev_replicate rev_map to_bl_upt word_size}
addsimprocs [word_len_simproc],
put_simpset no_split_ss \<^context> addsimps
@{thms list.simps split_conv replicate.simps list.map
zip_Cons_Cons zip_Nil drop_Suc_Cons drop_0 drop_Nil
foldr.simps list.map zip.simps(1) zip_Nil zip_Cons_Cons takefill_Suc_Cons
takefill_Suc_Nil takefill.Z rbl_succ2_simps
rbl_plus_simps rev_bin_to_bl_simps append.simps
takefill_last_simps drop_nonempty_simps
rev_bl_order_simps}
addsimprocs [expand_upt_simproc,
nat_get_Suc_simproc 4
[\<^term>‹replicate›, \<^term>‹takefill x›,
\<^term>‹drop›, \<^term>‹bin_to_bl›,
\<^term>‹takefill_last x›,
\<^term>‹drop_nonempty x›]],
put_simpset no_split_ss \<^context> addsimps @{thms xor3_simps carry_simps if_bool_simps}
])
fun tac ctxt =
let
val (ss, sss) = expand_word_eq_sss;
in
foldr1 (op THEN_ALL_NEW)
((CHANGED o safe_full_simp_tac (put_simpset ss ctxt)) ::
map (fn ss => safe_full_simp_tac (put_simpset ss ctxt)) sss)
end;
end
›
method_setup word_bitwise =
‹Scan.succeed (fn ctxt => Method.SIMPLE_METHOD (Word_Bitwise_Tac.tac ctxt 1))›
"decomposer for word equalities and inequalities into bit propositions on concrete word lengths"
end