Theory Native_Word.Uint8
chapter ‹Unsigned words of 8 bits›
theory Uint8 imports
Word_Type_Copies
Code_Target_Integer_Bit
begin
text ‹
Restriction for OCaml code generation:
OCaml does not provide an int8 type, so no special code generation
for this type is set up. If the theory \<^text>‹Code_Target_Int_Bit›
is imported, the type ‹uint8› is emulated via \<^typ>‹8 word›.
›
section ‹Type definition and primitive operations›
typedef uint8 = ‹UNIV :: 8 word set› ..
global_interpretation uint8: word_type_copy Abs_uint8 Rep_uint8
using type_definition_uint8 by (rule word_type_copy.intro)
setup_lifting type_definition_uint8
declare uint8.of_word_of [code abstype]
declare Quotient_uint8 [transfer_rule]
instantiation uint8 :: ‹{comm_ring_1, semiring_modulo, equal, linorder}›
begin
lift_definition zero_uint8 :: uint8 is 0 .
lift_definition one_uint8 :: uint8 is 1 .
lift_definition plus_uint8 :: ‹uint8 ⇒ uint8 ⇒ uint8› is ‹(+)› .
lift_definition uminus_uint8 :: ‹uint8 ⇒ uint8› is uminus .
lift_definition minus_uint8 :: ‹uint8 ⇒ uint8 ⇒ uint8› is ‹(-)› .
lift_definition times_uint8 :: ‹uint8 ⇒ uint8 ⇒ uint8› is ‹(*)› .
lift_definition divide_uint8 :: ‹uint8 ⇒ uint8 ⇒ uint8› is ‹(div)› .
lift_definition modulo_uint8 :: ‹uint8 ⇒ uint8 ⇒ uint8› is ‹(mod)› .
lift_definition equal_uint8 :: ‹uint8 ⇒ uint8 ⇒ bool› is ‹HOL.equal› .
lift_definition less_eq_uint8 :: ‹uint8 ⇒ uint8 ⇒ bool› is ‹(≤)› .
lift_definition less_uint8 :: ‹uint8 ⇒ uint8 ⇒ bool› is ‹(<)› .
global_interpretation uint8: word_type_copy_ring Abs_uint8 Rep_uint8
by standard (fact zero_uint8.rep_eq one_uint8.rep_eq
plus_uint8.rep_eq uminus_uint8.rep_eq minus_uint8.rep_eq
times_uint8.rep_eq divide_uint8.rep_eq modulo_uint8.rep_eq
equal_uint8.rep_eq less_eq_uint8.rep_eq less_uint8.rep_eq)+
instance proof -
show ‹OFCLASS(uint8, comm_ring_1_class)›
by (rule uint8.of_class_comm_ring_1)
show ‹OFCLASS(uint8, semiring_modulo_class)›
by (fact uint8.of_class_semiring_modulo)
show ‹OFCLASS(uint8, equal_class)›
by (fact uint8.of_class_equal)
show ‹OFCLASS(uint8, linorder_class)›
by (fact uint8.of_class_linorder)
qed
end
instantiation uint8 :: ring_bit_operations
begin
lift_definition bit_uint8 :: ‹uint8 ⇒ nat ⇒ bool› is bit .
lift_definition not_uint8 :: ‹uint8 ⇒ uint8› is ‹Bit_Operations.not› .
lift_definition and_uint8 :: ‹uint8 ⇒ uint8 ⇒ uint8› is ‹Bit_Operations.and› .
lift_definition or_uint8 :: ‹uint8 ⇒ uint8 ⇒ uint8› is ‹Bit_Operations.or› .
lift_definition xor_uint8 :: ‹uint8 ⇒ uint8 ⇒ uint8› is ‹Bit_Operations.xor› .
lift_definition mask_uint8 :: ‹nat ⇒ uint8› is mask .
lift_definition push_bit_uint8 :: ‹nat ⇒ uint8 ⇒ uint8› is push_bit .
lift_definition drop_bit_uint8 :: ‹nat ⇒ uint8 ⇒ uint8› is drop_bit .
lift_definition signed_drop_bit_uint8 :: ‹nat ⇒ uint8 ⇒ uint8› is signed_drop_bit .
lift_definition take_bit_uint8 :: ‹nat ⇒ uint8 ⇒ uint8› is take_bit .
lift_definition set_bit_uint8 :: ‹nat ⇒ uint8 ⇒ uint8› is Bit_Operations.set_bit .
lift_definition unset_bit_uint8 :: ‹nat ⇒ uint8 ⇒ uint8› is unset_bit .
lift_definition flip_bit_uint8 :: ‹nat ⇒ uint8 ⇒ uint8› is flip_bit .
global_interpretation uint8: word_type_copy_bits Abs_uint8 Rep_uint8 signed_drop_bit_uint8
by standard (fact bit_uint8.rep_eq not_uint8.rep_eq and_uint8.rep_eq or_uint8.rep_eq xor_uint8.rep_eq
mask_uint8.rep_eq push_bit_uint8.rep_eq drop_bit_uint8.rep_eq signed_drop_bit_uint8.rep_eq take_bit_uint8.rep_eq
set_bit_uint8.rep_eq unset_bit_uint8.rep_eq flip_bit_uint8.rep_eq)+
instance
by (fact uint8.of_class_ring_bit_operations)
end
lift_definition uint8_of_nat :: ‹nat ⇒ uint8›
is word_of_nat .
lift_definition nat_of_uint8 :: ‹uint8 ⇒ nat›
is unat .
lift_definition uint8_of_int :: ‹int ⇒ uint8›
is word_of_int .
lift_definition int_of_uint8 :: ‹uint8 ⇒ int›
is uint .
context
includes integer.lifting
begin
lift_definition Uint8 :: ‹integer ⇒ uint8›
is word_of_int .
lift_definition integer_of_uint8 :: ‹uint8 ⇒ integer›
is uint .
end
global_interpretation uint8: word_type_copy_more Abs_uint8 Rep_uint8 signed_drop_bit_uint8
uint8_of_nat nat_of_uint8 uint8_of_int int_of_uint8 Uint8 integer_of_uint8
apply standard
apply (simp_all add: uint8_of_nat.rep_eq nat_of_uint8.rep_eq
uint8_of_int.rep_eq int_of_uint8.rep_eq
Uint8.rep_eq integer_of_uint8.rep_eq integer_eq_iff)
done
instantiation uint8 :: "{size, msb, set_bit, bit_comprehension}"
begin
lift_definition size_uint8 :: ‹uint8 ⇒ nat› is size .
lift_definition msb_uint8 :: ‹uint8 ⇒ bool› is msb .
text ‹Workaround: avoid name space clash by spelling out \<^text>‹lift_definition› explicitly.›
definition set_bit_uint8 :: ‹uint8 ⇒ nat ⇒ bool ⇒ uint8›
where set_bit_uint8_eq: ‹set_bit_uint8 a n b = (if b then Bit_Operations.set_bit else unset_bit) n a›
context
includes lifting_syntax
begin
lemma set_bit_uint8_transfer [transfer_rule]:
‹(cr_uint8 ===> (=) ===> (⟷) ===> cr_uint8) Generic_set_bit.set_bit Generic_set_bit.set_bit›
by (simp only: set_bit_eq [abs_def] set_bit_uint8_eq [abs_def]) transfer_prover
end
lift_definition set_bits_uint8 :: ‹(nat ⇒ bool) ⇒ uint8› is set_bits .
lift_definition set_bits_aux_uint8 :: ‹(nat ⇒ bool) ⇒ nat ⇒ uint8 ⇒ uint8› is set_bits_aux .
global_interpretation uint8: word_type_copy_misc Abs_uint8 Rep_uint8 signed_drop_bit_uint8
uint8_of_nat nat_of_uint8 uint8_of_int int_of_uint8 Uint8 integer_of_uint8 8 set_bits_aux_uint8
by (standard; transfer) simp_all
instance using uint8.of_class_bit_comprehension
uint8.of_class_set_bit
by simp_all standard
end
section ‹Code setup›
code_printing code_module Uint8 ⇀ (SML)
‹(* Test that words can handle numbers between 0 and 3 *)
val _ = if 3 <= Word.wordSize then () else raise (Fail ("wordSize less than 3"));
structure Uint8 : sig
val generic_set_bit : Word8.word -> IntInf.int -> bool -> Word8.word
val shiftl : Word8.word -> IntInf.int -> Word8.word
val shiftr : Word8.word -> IntInf.int -> Word8.word
val shiftr_signed : Word8.word -> IntInf.int -> Word8.word
val test_bit : Word8.word -> IntInf.int -> bool
end = struct
fun generic_set_bit x n b =
let val mask = Word8.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))
in if b then Word8.orb (x, mask)
else Word8.andb (x, Word8.notb mask)
end
fun shiftl x n =
Word8.<< (x, Word.fromLargeInt (IntInf.toLarge n))
fun shiftr x n =
Word8.>> (x, Word.fromLargeInt (IntInf.toLarge n))
fun shiftr_signed x n =
Word8.~>> (x, Word.fromLargeInt (IntInf.toLarge n))
fun test_bit x n =
Word8.andb (x, Word8.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word8.fromInt 0
end; (* struct Uint8 *)›
code_reserved SML Uint8
code_printing code_module Uint8 ⇀ (Haskell)
‹module Uint8(Int8, Word8) where
import Data.Int(Int8)
import Data.Word(Word8)›
code_reserved Haskell Uint8
text ‹
Scala provides only signed 8bit numbers, so we use these and
implement sign-sensitive operations like comparisons manually.
›
code_printing code_module Uint8 ⇀ (Scala)
‹object Uint8 {
def less(x: Byte, y: Byte) : Boolean =
x < 0 match {
case true => y < 0 && x < y
case false => y < 0 || x < y
}
def less_eq(x: Byte, y: Byte) : Boolean =
x < 0 match {
case true => y < 0 && x <= y
case false => y < 0 || x <= y
}
def generic_set_bit(x: Byte, n: BigInt, b: Boolean) : Byte =
b match {
case true => (x | (1 << n.intValue)).toByte
case false => (x & (1 << n.intValue).unary_~).toByte
}
def shiftl(x: Byte, n: BigInt) : Byte = (x << n.intValue).toByte
def shiftr(x: Byte, n: BigInt) : Byte = ((x & 255) >>> n.intValue).toByte
def shiftr_signed(x: Byte, n: BigInt) : Byte = (x >> n.intValue).toByte
def test_bit(x: Byte, n: BigInt) : Boolean =
(x & (1 << n.intValue)) != 0
} /* object Uint8 */›
code_reserved Scala Uint8
text ‹
Avoid @{term Abs_uint8} in generated code, use @{term Rep_uint8'} instead.
The symbolic implementations for code\_simp use @{term Rep_uint8}.
The new destructor @{term Rep_uint8'} is executable.
As the simplifier is given the [code abstract] equations literally,
we cannot implement @{term Rep_uint8} directly, because that makes code\_simp loop.
If code generation raises Match, some equation probably contains @{term Rep_uint8}
([code abstract] equations for @{typ uint8} may use @{term Rep_uint8} because
these instances will be folded away.)
To convert @{typ "8 word"} values into @{typ uint8}, use @{term "Abs_uint8'"}.
›
definition Rep_uint8' where [simp]: "Rep_uint8' = Rep_uint8"
lemma Rep_uint8'_transfer [transfer_rule]:
"rel_fun cr_uint8 (=) (λx. x) Rep_uint8'"
unfolding Rep_uint8'_def by(rule uint8.rep_transfer)
lemma Rep_uint8'_code [code]: "Rep_uint8' x = (BITS n. bit x n)"
by transfer (simp add: set_bits_bit_eq)
lift_definition Abs_uint8' :: "8 word ⇒ uint8" is "λx :: 8 word. x" .
lemma Abs_uint8'_code [code]: "Abs_uint8' x = Uint8 (integer_of_int (uint x))"
including integer.lifting by transfer simp
declare [[code drop: "term_of_class.term_of :: uint8 ⇒ _"]]
lemma term_of_uint8_code [code]:
defines "TR ≡ typerep.Typerep" and "bit0 ≡ STR ''Numeral_Type.bit0''" shows
"term_of_class.term_of x =
Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint8.uint8.Abs_uint8'') (TR (STR ''fun'') [TR (STR ''Word.word'') [TR bit0 [TR bit0 [TR bit0 [TR (STR ''Numeral_Type.num1'') []]]]], TR (STR ''Uint8.uint8'') []]))
(term_of_class.term_of (Rep_uint8' x))"
by(simp add: term_of_anything)
lemma Uin8_code [code]: "Rep_uint8 (Uint8 i) = word_of_int (int_of_integer_symbolic i)"
unfolding Uint8_def int_of_integer_symbolic_def by(simp add: Abs_uint8_inverse)
code_printing type_constructor uint8 ⇀
(SML) "Word8.word" and
(Haskell) "Uint8.Word8" and
(Scala) "Byte"
| constant Uint8 ⇀
(SML) "Word8.fromLargeInt (IntInf.toLarge _)" and
(Haskell) "(Prelude.fromInteger _ :: Uint8.Word8)" and
(Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint8.Word8)" and
(Scala) "_.byteValue"
| constant "0 :: uint8" ⇀
(SML) "(Word8.fromInt 0)" and
(Haskell) "(0 :: Uint8.Word8)" and
(Scala) "0.toByte"
| constant "1 :: uint8" ⇀
(SML) "(Word8.fromInt 1)" and
(Haskell) "(1 :: Uint8.Word8)" and
(Scala) "1.toByte"
| constant "plus :: uint8 ⇒ _ ⇒ _" ⇀
(SML) "Word8.+ ((_), (_))" and
(Haskell) infixl 6 "+" and
(Scala) "(_ +/ _).toByte"
| constant "uminus :: uint8 ⇒ _" ⇀
(SML) "Word8.~" and
(Haskell) "negate" and
(Scala) "(- _).toByte"
| constant "minus :: uint8 ⇒ _" ⇀
(SML) "Word8.- ((_), (_))" and
(Haskell) infixl 6 "-" and
(Scala) "(_ -/ _).toByte"
| constant "times :: uint8 ⇒ _ ⇒ _" ⇀
(SML) "Word8.* ((_), (_))" and
(Haskell) infixl 7 "*" and
(Scala) "(_ */ _).toByte"
| constant "HOL.equal :: uint8 ⇒ _ ⇒ bool" ⇀
(SML) "!((_ : Word8.word) = _)" and
(Haskell) infix 4 "==" and
(Scala) infixl 5 "=="
| class_instance uint8 :: equal ⇀ (Haskell) -
| constant "less_eq :: uint8 ⇒ _ ⇒ bool" ⇀
(SML) "Word8.<= ((_), (_))" and
(Haskell) infix 4 "<=" and
(Scala) "Uint8.less'_eq"
| constant "less :: uint8 ⇒ _ ⇒ bool" ⇀
(SML) "Word8.< ((_), (_))" and
(Haskell) infix 4 "<" and
(Scala) "Uint8.less"
| constant "Bit_Operations.not :: uint8 ⇒ _" ⇀
(SML) "Word8.notb" and
(Haskell) "Data'_Bits.complement" and
(Scala) "_.unary'_~.toByte"
| constant "Bit_Operations.and :: uint8 ⇒ _" ⇀
(SML) "Word8.andb ((_),/ (_))" and
(Haskell) infixl 7 "Data_Bits..&." and
(Scala) "(_ & _).toByte"
| constant "Bit_Operations.or :: uint8 ⇒ _" ⇀
(SML) "Word8.orb ((_),/ (_))" and
(Haskell) infixl 5 "Data_Bits..|." and
(Scala) "(_ | _).toByte"
| constant "Bit_Operations.xor :: uint8 ⇒ _" ⇀
(SML) "Word8.xorb ((_),/ (_))" and
(Haskell) "Data'_Bits.xor" and
(Scala) "(_ ^ _).toByte"
definition uint8_divmod :: "uint8 ⇒ uint8 ⇒ uint8 × uint8" where
"uint8_divmod x y =
(if y = 0 then (undefined ((div) :: uint8 ⇒ _) x (0 :: uint8), undefined ((mod) :: uint8 ⇒ _) x (0 :: uint8))
else (x div y, x mod y))"
definition uint8_div :: "uint8 ⇒ uint8 ⇒ uint8"
where "uint8_div x y = fst (uint8_divmod x y)"
definition uint8_mod :: "uint8 ⇒ uint8 ⇒ uint8"
where "uint8_mod x y = snd (uint8_divmod x y)"
lemma div_uint8_code [code]: "x div y = (if y = 0 then 0 else uint8_div x y)"
including undefined_transfer unfolding uint8_divmod_def uint8_div_def
by transfer (simp add: word_div_def)
lemma mod_uint8_code [code]: "x mod y = (if y = 0 then x else uint8_mod x y)"
including undefined_transfer unfolding uint8_mod_def uint8_divmod_def
by transfer (simp add: word_mod_def)
definition uint8_sdiv :: "uint8 ⇒ uint8 ⇒ uint8"
where
"uint8_sdiv x y =
(if y = 0 then undefined ((div) :: uint8 ⇒ _) x (0 :: uint8)
else Abs_uint8 (Rep_uint8 x sdiv Rep_uint8 y))"
definition div0_uint8 :: "uint8 ⇒ uint8"
where [code del]: "div0_uint8 x = undefined ((div) :: uint8 ⇒ _) x (0 :: uint8)"
declare [[code abort: div0_uint8]]
definition mod0_uint8 :: "uint8 ⇒ uint8"
where [code del]: "mod0_uint8 x = undefined ((mod) :: uint8 ⇒ _) x (0 :: uint8)"
declare [[code abort: mod0_uint8]]
lemma uint8_divmod_code [code]:
"uint8_divmod x y =
(if 0x80 ≤ y then if x < y then (0, x) else (1, x - y)
else if y = 0 then (div0_uint8 x, mod0_uint8 x)
else let q = push_bit 1 (uint8_sdiv (drop_bit 1 x) y);
r = x - q * y
in if r ≥ y then (q + 1, r - y) else (q, r))"
including undefined_transfer unfolding uint8_divmod_def uint8_sdiv_def div0_uint8_def mod0_uint8_def
less_eq_uint8.rep_eq
apply transfer
apply (simp add: divmod_via_sdivmod push_bit_eq_mult)
done
lemma uint8_sdiv_code [code]:
"Rep_uint8 (uint8_sdiv x y) =
(if y = 0 then Rep_uint8 (undefined ((div) :: uint8 ⇒ _) x (0 :: uint8))
else Rep_uint8 x sdiv Rep_uint8 y)"
unfolding uint8_sdiv_def by(simp add: Abs_uint8_inverse)
text ‹
Note that we only need a translation for signed division, but not for the remainder
because @{thm uint8_divmod_code} computes both with division only.
›
code_printing
constant uint8_div ⇀
(SML) "Word8.div ((_), (_))" and
(Haskell) "Prelude.div"
| constant uint8_mod ⇀
(SML) "Word8.mod ((_), (_))" and
(Haskell) "Prelude.mod"
| constant uint8_divmod ⇀
(Haskell) "divmod"
| constant uint8_sdiv ⇀
(Scala) "(_ '/ _).toByte"
global_interpretation uint8: word_type_copy_target_language Abs_uint8 Rep_uint8 signed_drop_bit_uint8
uint8_of_nat nat_of_uint8 uint8_of_int int_of_uint8 Uint8 integer_of_uint8 8 set_bits_aux_uint8 8 7
defines uint8_test_bit = uint8.test_bit
and uint8_shiftl = uint8.shiftl
and uint8_shiftr = uint8.shiftr
and uint8_sshiftr = uint8.sshiftr
and uint8_generic_set_bit = uint8.gen_set_bit
by standard simp_all
code_printing constant uint8_test_bit ⇀
(SML) "Uint8.test'_bit" and
(Haskell) "Data'_Bits.testBitBounded" and
(Scala) "Uint8.test'_bit" and
(Eval) "(fn w => fn i => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_test'_bit out of bounds\") else Uint8.test'_bit w i)"
code_printing constant uint8_generic_set_bit ⇀
(SML) "Uint8.generic'_set'_bit" and
(Haskell) "Data'_Bits.genericSetBitBounded" and
(Scala) "Uint8.generic'_set'_bit" and
(Eval) "(fn w => fn i => fn b => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_generic'_set'_bit out of bounds\") else Uint8.generic'_set'_bit w i b)"
code_printing constant uint8_shiftl ⇀
(SML) "Uint8.shiftl" and
(Haskell) "Data'_Bits.shiftlBounded" and
(Scala) "Uint8.shiftl" and
(Eval) "(fn w => fn i => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_shiftl out of bounds\") else Uint8.shiftl w i)"
code_printing constant uint8_shiftr ⇀
(SML) "Uint8.shiftr" and
(Haskell) "Data'_Bits.shiftrBounded" and
(Scala) "Uint8.shiftr" and
(Eval) "(fn w => fn i => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_shiftr out of bounds\") else Uint8.shiftr w i)"
code_printing constant uint8_sshiftr ⇀
(SML) "Uint8.shiftr'_signed" and
(Haskell)
"(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint8.Int8) _)) :: Uint8.Word8)" and
(Scala) "Uint8.shiftr'_signed" and
(Eval) "(fn w => fn i => if i < 0 orelse i >= 8 then raise (Fail \"argument to uint8'_sshiftr out of bounds\") else Uint8.shiftr'_signed w i)"
context
includes bit_operations_syntax
begin
lemma uint8_msb_test_bit: "msb x ⟷ bit (x :: uint8) 7"
by transfer (simp add: msb_word_iff_bit)
lemma msb_uint16_code [code]: "msb x ⟷ uint8_test_bit x 7"
by (simp add: uint8.test_bit_def uint8_msb_test_bit)
lemma uint8_of_int_code [code]:
"uint8_of_int i = Uint8 (integer_of_int i)"
including integer.lifting by transfer simp
lemma int_of_uint8_code [code]:
"int_of_uint8 x = int_of_integer (integer_of_uint8 x)"
by (simp add: int_of_uint8.rep_eq integer_of_uint8_def)
lemma uint8_of_nat_code [code]:
"uint8_of_nat = uint8_of_int ∘ int"
by transfer (simp add: fun_eq_iff)
lemma nat_of_uint8_code [code]:
"nat_of_uint8 x = nat_of_integer (integer_of_uint8 x)"
unfolding integer_of_uint8_def including integer.lifting by transfer simp
definition integer_of_uint8_signed :: "uint8 ⇒ integer"
where
"integer_of_uint8_signed n = (if bit n 7 then undefined integer_of_uint8 n else integer_of_uint8 n)"
lemma integer_of_uint8_signed_code [code]:
"integer_of_uint8_signed n =
(if bit n 7 then undefined integer_of_uint8 n else integer_of_int (uint (Rep_uint8' n)))"
by (simp add: integer_of_uint8_signed_def integer_of_uint8_def)
lemma integer_of_uint8_code [code]:
"integer_of_uint8 n =
(if bit n 7 then integer_of_uint8_signed (n AND 0x7F) OR 0x80 else integer_of_uint8_signed n)"
proof -
have ‹integer_of_uint8_signed (n AND 0x7F) OR 0x80 = Bit_Operations.set_bit 7 (integer_of_uint8_signed (take_bit 7 n))›
by (simp add: take_bit_eq_mask set_bit_eq_or push_bit_eq_mult mask_eq_exp_minus_1)
moreover have ‹integer_of_uint8 n = Bit_Operations.set_bit 7 (integer_of_uint8 (take_bit 7 n))› if ‹bit n 7›
proof (rule bit_eqI)
fix m
from that show ‹bit (integer_of_uint8 n) m = bit (Bit_Operations.set_bit 7 (integer_of_uint8 (take_bit 7 n))) m› for m
including integer.lifting by transfer (auto simp add: bit_simps dest: bit_imp_le_length)
qed
ultimately show ?thesis
by simp (simp add: integer_of_uint8_signed_def bit_simps)
qed
end
code_printing
constant "integer_of_uint8" ⇀
(SML) "IntInf.fromLarge (Word8.toLargeInt _)" and
(Haskell) "Prelude.toInteger"
| constant "integer_of_uint8_signed" ⇀
(Scala) "BigInt"
section ‹Quickcheck setup›
definition uint8_of_natural :: "natural ⇒ uint8"
where "uint8_of_natural x ≡ Uint8 (integer_of_natural x)"
instantiation uint8 :: "{random, exhaustive, full_exhaustive}" begin
definition "random_uint8 ≡ qc_random_cnv uint8_of_natural"
definition "exhaustive_uint8 ≡ qc_exhaustive_cnv uint8_of_natural"
definition "full_exhaustive_uint8 ≡ qc_full_exhaustive_cnv uint8_of_natural"
instance ..
end
instantiation uint8 :: narrowing begin
interpretation quickcheck_narrowing_samples
"λi. let x = Uint8 i in (x, 0xFF - x)" "0"
"Typerep.Typerep (STR ''Uint8.uint8'') []" .
definition "narrowing_uint8 d = qc_narrowing_drawn_from (narrowing_samples d) d"
declare [[code drop: "partial_term_of :: uint8 itself ⇒ _"]]
lemmas partial_term_of_uint8 [code] = partial_term_of_code
instance ..
end
end