Theory DNFUni
subsection "Overall General VS Proofs"
theory DNFUni
imports QE InfinitesimalsUni
begin
fun DNFUni :: "atomUni fmUni ⇒ atomUni list list" where
"DNFUni (AtomUni a) = [[a]]"|
"DNFUni (TrueFUni) = [[]]" |
"DNFUni (FalseFUni) = []"|
"DNFUni (AndUni A B) = [A' @ B'. A' ← DNFUni A, B' ← DNFUni B]"|
"DNFUni (OrUni A B) = DNFUni A @ DNFUni B"
lemma eval_DNFUni : "evalUni F x = evalUni (list_disj_Uni(map (list_conj_Uni o (map AtomUni)) (DNFUni F))) x"
proof(induction F)
case TrueFUni
then show ?case by auto
next
case FalseFUni
then show ?case by auto
next
case (AtomUni x)
then show ?case by auto
next
case (AndUni F1 F2)
show ?case unfolding DNFUni.simps eval_list_disj_Uni evalUni.simps AndUni List.map_concat List.set_concat apply simp
unfolding eval_list_conj_Uni_append
by blast
next
case (OrUni F1 F2)
then show ?case unfolding DNFUni.simps List.map_append eval_list_disj_Uni List.set_append evalUni.simps
by blast
qed
fun elimVarUni_atom :: "atomUni list ⇒ atomUni ⇒ atomUni fmUni" where
"elimVarUni_atom F (EqUni (a,b,c)) =
(OrUni
(AndUni
(AndUni (AtomUni (EqUni (0,0,a))) (AtomUni (NeqUni (0,0,b))))
(list_conj_Uni (map (linearSubstitutionUni b c) F)))
(AndUni (AtomUni (NeqUni (0,0,a))) (AndUni (AtomUni(LeqUni (0,0,-(b^2)+4*a*c)))
(OrUni
(list_conj_Uni (map (quadraticSubUni (-b) 1 (b^2-4*a*c) (2*a)) F))
(list_conj_Uni (map (quadraticSubUni (-b) (-1) (b^2-4*a*c) (2*a)) F))
)
)
)
)
" |
"elimVarUni_atom F (LeqUni (a,b,c)) =
(OrUni
(AndUni
(AndUni (AtomUni (EqUni (0,0,a))) (AtomUni (NeqUni (0,0,b))))
(list_conj_Uni (map (linearSubstitutionUni b c) F)))
(AndUni (AtomUni (NeqUni (0,0,a))) (AndUni (AtomUni(LeqUni (0,0,-(b^2)+4*a*c)))
(OrUni
(list_conj_Uni (map (quadraticSubUni (-b) 1 (b^2-4*a*c) (2*a)) F))
(list_conj_Uni (map (quadraticSubUni (-b) (-1) (b^2-4*a*c) (2*a)) F))
)
)
)
)
" |
"elimVarUni_atom F (LessUni (a,b,c)) =
(OrUni
(AndUni
(AndUni (AtomUni (EqUni (0,0,a))) (AtomUni (NeqUni (0,0,b))))
(list_conj_Uni (map (substInfinitesimalLinearUni b c) F)))
(AndUni (AtomUni (NeqUni (0,0,a))) (AndUni (AtomUni(LeqUni (0,0,-(b^2)+4*a*c)))
(OrUni
(list_conj_Uni (map(substInfinitesimalQuadraticUni (-b) 1 (b^2-4*a*c) (2*a)) F))
(list_conj_Uni (map(substInfinitesimalQuadraticUni (-b) (-1) (b^2-4*a*c) (2*a)) F))
)
)
)
)
"|
"elimVarUni_atom F (NeqUni (a,b,c)) =
(OrUni
(AndUni
(AndUni (AtomUni (EqUni (0,0,a))) (AtomUni (NeqUni (0,0,b))))
(list_conj_Uni (map (substInfinitesimalLinearUni b c) F)))
(AndUni (AtomUni (NeqUni (0,0,a))) (AndUni (AtomUni(LeqUni (0,0,-(b^2)+4*a*c)))
(OrUni
(list_conj_Uni (map(substInfinitesimalQuadraticUni (-b) 1 (b^2-4*a*c) (2*a)) F))
(list_conj_Uni (map(substInfinitesimalQuadraticUni (-b) (-1) (b^2-4*a*c) (2*a)) F))
)
)
)
)
"
fun generalVS_DNF :: "atomUni list ⇒ atomUni fmUni" where
"generalVS_DNF L = list_disj_Uni (list_conj_Uni(map substNegInfinityUni L) # (map (λA. elimVarUni_atom L A) L))"
end