Theory Lifting_Simulation_To_Bisimulation
theory Lifting_Simulation_To_Bisimulation
imports Well_founded
begin
definition stuck_state :: "('a ⇒ 'b ⇒ bool) ⇒ 'a ⇒ bool" where
"stuck_state ℛ s ⟷ (∄s'. ℛ s s')"
definition simulation ::
"('a ⇒ 'a ⇒ bool) ⇒ ('b ⇒ 'b ⇒ bool) ⇒ ('c ⇒ 'a ⇒ 'b ⇒ bool) ⇒ ('c ⇒ 'c ⇒ bool) ⇒ bool"
where
"simulation ℛ⇩1 ℛ⇩2 match order ⟷
(∀i s1 s2 s1'. match i s1 s2 ⟶ ℛ⇩1 s1 s1' ⟶
(∃s2' i'. ℛ⇩2⇧+⇧+ s2 s2' ∧ match i' s1' s2') ∨ (∃i'. match i' s1' s2 ∧ order i' i))"
lemma finite_progress:
fixes
step1 :: "'s1 ⇒ 's1 ⇒ bool" and
step2 :: "'s2 ⇒ 's2 ⇒ bool" and
match :: "'i ⇒ 's1 ⇒ 's2 ⇒ bool" and
order :: "'i ⇒ 'i ⇒ bool"
assumes
matching_states_agree_on_stuck:
"∀i s1 s2. match i s1 s2 ⟶ stuck_state step1 s1 ⟷ stuck_state step2 s2" and
well_founded_order: "wfp order" and
sim: "simulation step1 step2 match order"
shows "match i s1 s2 ⟹ step1 s1 s1' ⟹
∃m s1'' n s2'' i'. (step1 ^^ m) s1' s1'' ∧ (step2 ^^ Suc n) s2 s2'' ∧ match i' s1'' s2''"
using well_founded_order
proof (induction i arbitrary: s1 s1' rule: wfp_induct_rule)
case (less i)
show ?case
using sim[unfolded simulation_def, rule_format, OF ‹match i s1 s2› ‹step1 s1 s1'›]
proof (elim disjE exE conjE)
show "⋀s2' i'. step2⇧+⇧+ s2 s2' ⟹ match i' s1' s2' ⟹ ?thesis"
by (metis Suc_pred relpowp_0_I tranclp_power)
next
fix i'
assume "match i' s1' s2" and "order i' i"
have "¬ stuck_state step1 s1"
using ‹step1 s1 s1'› stuck_state_def by metis
hence "¬ stuck_state step2 s2"
using ‹match i s1 s2› matching_states_agree_on_stuck by metis
hence "¬ stuck_state step1 s1'"
using ‹match i' s1' s2› matching_states_agree_on_stuck by metis
then obtain s1'' where "step1 s1' s1''"
by (metis stuck_state_def)
obtain m s1''' n s2' i'' where
"(step1 ^^ m) s1'' s1'''" and
"(step2 ^^ Suc n) s2 s2'" and
"match i'' s1''' s2'"
using less.IH[OF ‹order i' i› ‹match i' s1' s2› ‹step1 s1' s1''›] by metis
show ?thesis
proof (intro exI conjI)
show "(step1 ^^ Suc m) s1' s1'''"
using ‹(step1 ^^ m) s1'' s1'''› ‹step1 s1' s1''› by (metis relpowp_Suc_I2)
next
show "(step2 ^^ Suc n) s2 s2'"
using ‹(step2 ^^ Suc n) s2 s2'› .
next
show "match i'' s1''' s2'"
using ‹match i'' s1''' s2'› .
qed
qed
qed
context begin
private inductive match_bisim
for ℛ⇩1 :: "'a ⇒ 'a ⇒ bool" and ℛ⇩2 :: "'b ⇒ 'b ⇒ bool" and
match :: "'c ⇒ 'a ⇒ 'b ⇒ bool" and order :: "'c ⇒ 'c ⇒ bool"
where
bisim_stuck: "stuck_state ℛ⇩1 s1 ⟹ stuck_state ℛ⇩2 s2 ⟹ match i s1 s2 ⟹
match_bisim ℛ⇩1 ℛ⇩2 match order (0, 0) s1 s2" |
bisim_steps: "match i s1⇩0 s2⇩0 ⟹ ℛ⇩1⇧*⇧* s1⇩0 s1 ⟹ (ℛ⇩1 ^^ Suc m) s1 s1' ⟹
ℛ⇩2⇧*⇧* s2⇩0 s2 ⟹ (ℛ⇩2 ^^ Suc n) s2 s2' ⟹ match i' s1' s2' ⟹
match_bisim ℛ⇩1 ℛ⇩2 match order (m, n) s1 s2"
theorem lift_strong_simulation_to_bisimulation:
fixes
step1 :: "'s1 ⇒ 's1 ⇒ bool" and
step2 :: "'s2 ⇒ 's2 ⇒ bool" and
match :: "'i ⇒ 's1 ⇒ 's2 ⇒ bool" and
order :: "'i ⇒ 'i ⇒ bool"
assumes
matching_states_agree_on_stuck:
"∀i s1 s2. match i s1 s2 ⟶ stuck_state step1 s1 ⟷ stuck_state step2 s2" and
well_founded_order: "wfp order" and
sim: "simulation step1 step2 match order"
obtains
MATCH :: "nat × nat ⇒ 's1 ⇒ 's2 ⇒ bool" and
ORDER :: "nat × nat ⇒ nat × nat ⇒ bool"
where
"⋀i s1 s2. match i s1 s2 ⟹ (∃j. MATCH j s1 s2)"
"⋀j s1 s2. MATCH j s1 s2 ⟹
(∃i. stuck_state step1 s1 ∧ stuck_state step2 s2 ∧ match i s1 s2) ∨
(∃i s1' s2'. step1⇧+⇧+ s1 s1' ∧ step2⇧+⇧+ s2 s2' ∧ match i s1' s2')" and
"wfp ORDER" and
"right_unique step1 ⟹ simulation step1 step2 (λi s1 s2. MATCH i s1 s2) ORDER" and
"right_unique step2 ⟹ simulation step2 step1 (λi s2 s1. MATCH i s1 s2) ORDER"
proof -
define MATCH :: "nat × nat ⇒ 's1 ⇒ 's2 ⇒ bool" where
"MATCH = match_bisim step1 step2 match order"
define ORDER :: "nat × nat ⇒ nat × nat ⇒ bool" where
"ORDER = lex_prodp ((<) :: nat ⇒ nat ⇒ bool) ((<) :: nat ⇒ nat ⇒ bool)"
have MATCH_if_match: "⋀i s1 s2. match i s1 s2 ⟹ ∃j. MATCH j s1 s2"
proof -
fix i s1 s2
assume "match i s1 s2"
have "stuck_state step1 s1 ⟷ stuck_state step2 s2"
using ‹match i s1 s2› matching_states_agree_on_stuck by metis
hence "(stuck_state step1 s1 ∧ stuck_state step2 s2) ∨ (∃s1' s2'. step1 s1 s1' ∧ step2 s2 s2')"
by (metis stuck_state_def)
thus "∃j. MATCH j s1 s2"
proof (elim disjE conjE exE)
show "stuck_state step1 s1 ⟹ stuck_state step2 s2 ⟹ ∃j. MATCH j s1 s2"
by (metis MATCH_def ‹match i s1 s2› bisim_stuck)
next
fix s1' s2'
assume "step1 s1 s1'" and "step2 s2 s2'"
obtain m n s1'' s2'' i' where
"(step1 ^^ m) s1' s1''" and
"(step2 ^^ Suc n) s2 s2''" and
"match i' s1'' s2''"
using finite_progress[OF assms ‹match i s1 s2› ‹step1 s1 s1'›] by metis
show "∃j. MATCH j s1 s2"
proof (intro exI)
show "MATCH (m, n) s1 s2"
unfolding MATCH_def
proof (rule bisim_steps)
show "match i s1 s2"
using ‹match i s1 s2› .
next
show "step1⇧*⇧* s1 s1"
by simp
next
show "(step1 ^^ Suc m) s1 s1''"
using ‹step1 s1 s1'› ‹(step1 ^^ m) s1' s1''› by (metis relpowp_Suc_I2)
next
show "step2⇧*⇧* s2 s2"
by simp
next
show "(step2 ^^ Suc n) s2 s2''"
using ‹(step2 ^^ Suc n) s2 s2''› .
next
show "match i' s1'' s2''"
using ‹match i' s1'' s2''› .
qed
qed
qed
qed
show thesis
proof (rule that)
show "⋀i s1 s2. match i s1 s2 ⟹ ∃j. MATCH j s1 s2"
using MATCH_if_match .
next
fix j :: "nat × nat" and s1 :: 's1 and s2 :: 's2
assume "MATCH j s1 s2"
thus "(∃i. stuck_state step1 s1 ∧ stuck_state step2 s2 ∧ match i s1 s2) ∨
(∃i s1' s2'. step1⇧+⇧+ s1 s1' ∧ step2⇧+⇧+ s2 s2' ∧ match i s1' s2')"
unfolding MATCH_def
proof (cases step1 step2 match order j s1 s2 rule: match_bisim.cases)
case (bisim_stuck i)
thus ?thesis
by blast
next
case (bisim_steps i s1⇩0 s2⇩0 m s1' n s2' i')
hence "∃i s1' s2'. step1⇧+⇧+ s1 s1' ∧ step2⇧+⇧+ s2 s2' ∧ match i s1' s2'"
by (metis tranclp_power zero_less_Suc)
thus ?thesis ..
qed
next
show "wfp ORDER"
unfolding ORDER_def
using lex_prodp_wfP wfp_on_less well_founded_order by metis
next
assume "right_unique step1"
show "simulation step1 step2 MATCH ORDER"
unfolding simulation_def
proof (intro allI impI)
fix j :: "nat × nat" and s1 s1' :: 's1 and s2 :: 's2
assume "MATCH j s1 s2" and "step1 s1 s1'"
hence "match_bisim step1 step2 match order j s1 s2"
unfolding MATCH_def by metis
thus "(∃s2' j'. step2⇧+⇧+ s2 s2' ∧ MATCH j' s1' s2') ∨ (∃j'. MATCH j' s1' s2 ∧ ORDER j' j)"
proof (cases step1 step2 match order j s1 s2 rule: match_bisim.cases)
case (bisim_stuck i)
hence False
using ‹step1 s1 s1'› stuck_state_def by metis
thus ?thesis ..
next
case (bisim_steps i s1⇩0 s2⇩0 m s1'' n s2' i')
have "(step1 ^^ m) s1' s1''"
using ‹step1 s1 s1'› ‹(step1 ^^ Suc m) s1 s1''› ‹right_unique step1›
by (metis relpowp_Suc_D2 right_uniqueD)
show ?thesis
proof (cases m)
case 0
hence "s1'' = s1'"
using ‹(step1 ^^ m) s1' s1''› by simp
have "step2⇧+⇧+ s2 s2'"
using ‹(step2 ^^ Suc n) s2 s2'› by (metis tranclp_power zero_less_Suc)
moreover have "∃j'. MATCH j' s1' s2'"
using ‹match i' s1'' s2'› ‹s1'' = s1'› MATCH_if_match by metis
ultimately show ?thesis
by metis
next
case (Suc m')
define j' where
"j' = (m', n)"
have "MATCH j' s1' s2"
unfolding MATCH_def j'_def
proof (rule match_bisim.bisim_steps)
show "match i s1⇩0 s2⇩0"
using ‹match i s1⇩0 s2⇩0› .
next
show "step1⇧*⇧* s1⇩0 s1'"
using ‹step1⇧*⇧* s1⇩0 s1› ‹step1 s1 s1'› by auto
next
show "(step1 ^^ Suc m') s1' s1''"
using ‹(step1 ^^ m) s1' s1''› ‹m = Suc m'› by argo
next
show "step2⇧*⇧* s2⇩0 s2"
using ‹step2⇧*⇧* s2⇩0 s2› .
next
show "(step2 ^^ Suc n) s2 s2'"
using ‹(step2 ^^ Suc n) s2 s2'› .
next
show "match i' s1'' s2'"
using ‹match i' s1'' s2'› .
qed
moreover have "ORDER j' j"
unfolding ORDER_def ‹j' = (m', n)› ‹j = (m, n)› ‹m = Suc m'›
by (simp add: lex_prodp_def)
ultimately show ?thesis
by metis
qed
qed
qed
next
assume "right_unique step2"
show "simulation step2 step1 (λi s2 s1. MATCH i s1 s2) ORDER"
unfolding simulation_def
proof (intro allI impI)
fix j :: "nat × nat" and s1 :: 's1 and s2 s2' :: 's2
assume "MATCH j s1 s2" and "step2 s2 s2'"
hence "match_bisim step1 step2 match order j s1 s2"
unfolding MATCH_def by metis
thus "(∃s1' j'. step1⇧+⇧+ s1 s1' ∧ MATCH j' s1' s2') ∨ (∃j'. MATCH j' s1 s2' ∧ ORDER j' j)"
proof (cases step1 step2 match order j s1 s2 rule: match_bisim.cases)
case (bisim_stuck i)
hence "stuck_state step2 s2"
by argo
hence False
using ‹step2 s2 s2'› stuck_state_def by metis
thus ?thesis ..
next
case (bisim_steps i s1⇩0 s2⇩0 m s1' n s2'' i')
show ?thesis
proof (cases n)
case 0
hence "s2'' = s2'"
using ‹step2 s2 s2'› ‹(step2 ^^ Suc n) s2 s2''› ‹right_unique step2›
by (metis One_nat_def relpowp_1 right_uniqueD)
have "step1⇧+⇧+ s1 s1'"
using ‹(step1 ^^ Suc m) s1 s1'›
by (metis less_Suc_eq_0_disj tranclp_power)
moreover have "∃j'. MATCH j' s1' s2'"
using ‹match i' s1' s2''› ‹s2'' = s2'› MATCH_if_match by metis
ultimately show ?thesis
by metis
next
case (Suc n')
define j' where
"j' = (m, n')"
have "MATCH j' s1 s2'"
unfolding MATCH_def j'_def
proof (rule match_bisim.bisim_steps)
show "match i s1⇩0 s2⇩0"
using ‹match i s1⇩0 s2⇩0› .
next
show "step1⇧*⇧* s1⇩0 s1"
using ‹step1⇧*⇧* s1⇩0 s1› .
next
show "(step1 ^^ Suc m) s1 s1'"
using ‹(step1 ^^ Suc m) s1 s1'› .
next
show "step2⇧*⇧* s2⇩0 s2'"
using ‹step2⇧*⇧* s2⇩0 s2› ‹step2 s2 s2'› by auto
next
show "(step2 ^^ Suc n') s2' s2''"
using ‹step2 s2 s2'› ‹(step2 ^^ Suc n) s2 s2''› ‹right_unique step2›
by (metis Suc relpowp_Suc_D2 right_uniqueD)
next
show "match i' s1' s2''"
using ‹match i' s1' s2''› .
qed
moreover have "ORDER j' j"
unfolding ORDER_def ‹j' = (m, n')› ‹j = (m, n)› ‹n = Suc n'›
by (simp add: lex_prodp_def)
ultimately show ?thesis
by metis
qed
qed
qed
qed
qed
end
definition safe_state where
"safe_state ℛ ℱ s ⟷ (∀s'. ℛ⇧*⇧* s s' ⟶ stuck_state ℛ s' ⟶ ℱ s')"
lemma step_preserves_safe_state:
"ℛ s s' ⟹ safe_state ℛ ℱ s ⟹ safe_state ℛ ℱ s'"
by (simp add: safe_state_def converse_rtranclp_into_rtranclp)
lemma rtranclp_step_preserves_safe_state:
"ℛ⇧*⇧* s s' ⟹ safe_state ℛ ℱ s ⟹ safe_state ℛ ℱ s'"
by (simp add: rtranclp_induct step_preserves_safe_state)
lemma tranclp_step_preserves_safe_state:
"ℛ⇧+⇧+ s s' ⟹ safe_state ℛ ℱ s ⟹ safe_state ℛ ℱ s'"
by (simp add: step_preserves_safe_state tranclp_induct)
lemma safe_state_before_step_if_safe_state_after:
assumes "right_unique ℛ"
shows "ℛ s s' ⟹ safe_state ℛ ℱ s' ⟹ safe_state ℛ ℱ s"
by (smt (verit, ccfv_threshold) assms converse_rtranclpE right_uniqueD safe_state_def
stuck_state_def)
lemma safe_state_before_rtranclp_step_if_safe_state_after:
assumes "right_unique ℛ"
shows "ℛ⇧*⇧* s s' ⟹ safe_state ℛ ℱ s' ⟹ safe_state ℛ ℱ s"
by (smt (verit, best) assms converse_rtranclp_induct safe_state_before_step_if_safe_state_after)
lemma safe_state_before_tranclp_step_if_safe_state_after:
assumes "right_unique ℛ"
shows "ℛ⇧+⇧+ s s' ⟹ safe_state ℛ ℱ s' ⟹ safe_state ℛ ℱ s"
by (meson assms safe_state_before_rtranclp_step_if_safe_state_after tranclp_into_rtranclp)
lemma safe_state_if_all_states_safe:
fixes ℛ ℱ s
assumes "⋀s. ℱ s ∨ (∃s'. ℛ s s')"
shows "safe_state ℛ ℱ s"
using assms by (metis safe_state_def stuck_state_def)
lemma
fixes ℛ ℱ s
shows "safe_state ℛ ℱ s ⟹ ℱ s ∨ (∃s'. ℛ s s')"
by (metis rtranclp.rtrancl_refl safe_state_def stuck_state_def)
lemma matching_states_agree_on_stuck_if_they_agree_on_final:
assumes
final1_stuck: "∀s1. final1 s1 ⟶ (∄s1'. step1 s1 s1')" and
final2_stuck: "∀s2. final2 s2 ⟶ (∄s2'. step2 s2 s2')" and
matching_states_agree_on_final: "∀i s1 s2. match i s1 s2 ⟶ final1 s1 ⟷ final2 s2" and
matching_states_are_safe:
"∀i s1 s2. match i s1 s2 ⟶ safe_state step1 final1 s1 ∧ safe_state step2 final2 s2"
shows "∀i s1 s2. match i s1 s2 ⟶ stuck_state step1 s1 ⟷ stuck_state step2 s2"
using assms by (metis rtranclp.rtrancl_refl safe_state_def stuck_state_def)
locale wellbehaved_transition_system =
fixes ℛ :: "'s ⇒ 's ⇒ bool" and ℱ :: "'s ⇒ bool" and 𝒮 :: "'s ⇒ bool"
assumes
determ: "right_unique ℛ" and
stuck_if_final: "⋀x. ℱ x ⟹ stuck_state ℛ x" and
safe_if_invar: "⋀x. 𝒮 x ⟹ safe_state ℛ ℱ x"
lemma (in wellbehaved_transition_system) final_iff_stuck_if_invar:
fixes x
assumes "𝒮 x"
shows "ℱ x ⟷ stuck_state ℛ x"
proof (intro iffI)
assume "ℱ x"
thus "stuck_state ℛ x"
by (fact stuck_if_final)
next
assume "stuck_state ℛ x"
thus "ℱ x"
by (metis assms rtranclp.rtrancl_refl safe_if_invar safe_state_def stuck_state_def)
qed
lemma wellbehaved_transition_systems_agree_on_final_iff_agree_on_stuck:
fixes
ℛ⇩a :: "'a ⇒ 'a ⇒ bool" and ℱ⇩a :: "'a ⇒ bool" and
ℛ⇩b :: "'b ⇒ 'b ⇒ bool" and ℱ⇩b :: "'b ⇒ bool" and
ℳ :: "'i ⇒ 'a ⇒ 'b ⇒ bool"
assumes
"wellbehaved_transition_system ℛ⇩a ℱ⇩a (λa. ∃i b. ℳ i a b)" and
"wellbehaved_transition_system ℛ⇩b ℱ⇩b (λb. ∃i a. ℳ i a b)" and
"ℳ i a b"
shows "(ℱ⇩a a ⟷ ℱ⇩b b) ⟷ (stuck_state ℛ⇩a a ⟷ stuck_state ℛ⇩b b)"
using assms
by (metis (mono_tags, lifting) wellbehaved_transition_system.final_iff_stuck_if_invar)
corollary lift_strong_simulation_to_bisimulation':
fixes
step1 :: "'s1 ⇒ 's1 ⇒ bool" and
step2 :: "'s2 ⇒ 's2 ⇒ bool" and
match :: "'i ⇒ 's1 ⇒ 's2 ⇒ bool" and
order :: "'i ⇒ 'i ⇒ bool"
assumes
"right_unique step1" and
"right_unique step2" and
final1_stuck: "∀s1. final1 s1 ⟶ (∄s1'. step1 s1 s1')" and
final2_stuck: "∀s2. final2 s2 ⟶ (∄s2'. step2 s2 s2')" and
matching_states_agree_on_final:
"∀i s1 s2. match i s1 s2 ⟶ final1 s1 ⟷ final2 s2" and
matching_states_are_safe:
"∀i s1 s2. match i s1 s2 ⟶ safe_state step1 final1 s1 ∧ safe_state step2 final2 s2" and
order_well_founded: "wfp order" and
sim: "simulation step1 step2 match order"
obtains
MATCH :: "nat × nat ⇒ 's1 ⇒ 's2 ⇒ bool" and
ORDER :: "nat × nat ⇒ nat × nat ⇒ bool"
where
"⋀i s1 s2. match i s1 s2 ⟹ (∃j. MATCH j s1 s2)"
"⋀j s1 s2. MATCH j s1 s2 ⟹ final1 s1 ⟷ final2 s2" and
"⋀j s1 s2. MATCH j s1 s2 ⟹ stuck_state step1 s1 ⟷ stuck_state step2 s2" and
"⋀j s1 s2. MATCH j s1 s2 ⟹ safe_state step1 final1 s1 ∧ safe_state step2 final2 s2" and
"wfp ORDER" and
"simulation step1 step2 (λi s1 s2. MATCH i s1 s2) ORDER" and
"simulation step2 step1 (λi s2 s1. MATCH i s1 s2) ORDER"
proof -
have matching_states_agree_on_stuck:
"∀i s1 s2. match i s1 s2 ⟶ stuck_state step1 s1 ⟷ stuck_state step2 s2"
using matching_states_agree_on_stuck_if_they_agree_on_final[OF final1_stuck final2_stuck
matching_states_agree_on_final matching_states_are_safe] .
obtain
MATCH :: "nat × nat ⇒ 's1 ⇒ 's2 ⇒ bool" and
ORDER :: "nat × nat ⇒ nat × nat ⇒ bool"
where
MATCH_if_match: "⋀i s1 s2. match i s1 s2 ⟹ ∃j. MATCH j s1 s2" and
MATCH_spec: "⋀j s1 s2. MATCH j s1 s2 ⟹
(∃i. stuck_state step1 s1 ∧ stuck_state step2 s2 ∧ match i s1 s2) ∨
(∃i s1' s2'. step1⇧+⇧+ s1 s1' ∧ step2⇧+⇧+ s2 s2' ∧ match i s1' s2')" and
"wfp ORDER" and
"simulation step1 step2 MATCH ORDER" and
"simulation step2 step1 (λi s2 s1. MATCH i s1 s2) ORDER"
using ‹right_unique step1› ‹right_unique step2›
using lift_strong_simulation_to_bisimulation[
OF matching_states_agree_on_stuck
order_well_founded sim]
by (smt (verit))
have wellbehaved1: "wellbehaved_transition_system step1 final1 (λa. ∃i b. MATCH i a b)"
proof unfold_locales
show "right_unique step1"
using ‹right_unique step1› .
next
show "⋀x. final1 x ⟹ stuck_state step1 x"
unfolding stuck_state_def
using final1_stuck by metis
next
show "⋀x. ∃i b. MATCH i x b ⟹ safe_state step1 final1 x"
by (meson MATCH_spec assms(1) matching_states_are_safe safe_state_before_tranclp_step_if_safe_state_after)
qed
have wellbehaved2: "wellbehaved_transition_system step2 final2 (λb. ∃i a. MATCH i a b)"
proof unfold_locales
show "right_unique step2"
using ‹right_unique step2› .
next
show "⋀x. final2 x ⟹ stuck_state step2 x"
unfolding stuck_state_def
using final2_stuck by metis
next
show "⋀x. ∃i a. MATCH i a x ⟹ safe_state step2 final2 x"
by (meson MATCH_spec assms(2) matching_states_are_safe
safe_state_before_tranclp_step_if_safe_state_after)
qed
show thesis
proof (rule that)
show "⋀i s1 s2. match i s1 s2 ⟹ ∃j. MATCH j s1 s2"
using MATCH_if_match .
next
show "⋀j s1 s2. MATCH j s1 s2 ⟹ stuck_state step1 s1 ⟷ stuck_state step2 s2"
using MATCH_spec
by (metis stuck_state_def tranclpD)
then show "⋀j s1 s2. MATCH j s1 s2 ⟹ final1 s1 ⟷ final2 s2"
using wellbehaved_transition_systems_agree_on_final_iff_agree_on_stuck[
OF wellbehaved1 wellbehaved2]
by blast
next
fix j s1 s2
assume "MATCH j s1 s2"
then show "safe_state step1 final1 s1 ∧ safe_state step2 final2 s2"
using wellbehaved_transition_system.safe_if_invar[OF wellbehaved1, of s1]
using wellbehaved_transition_system.safe_if_invar[OF wellbehaved2, of s2]
by blast
next
show "wfp ORDER"
using ‹wfp ORDER› .
next
show "simulation step1 step2 (λi s1 s2. MATCH i s1 s2) ORDER"
using ‹simulation step1 step2 (λi s1 s2. MATCH i s1 s2) ORDER› .
next
show "simulation step2 step1 (λi s2 s1. MATCH i s1 s2) ORDER"
using ‹simulation step2 step1 (λi s2 s1. MATCH i s1 s2) ORDER› .
qed
qed
end