Theory Imperative_HOL_Add
section ‹Additions to Imperative/HOL›
theory Imperative_HOL_Add
imports "HOL-Imperative_HOL.Imperative_HOL"
begin
text ‹This theory loads the Imperative HOL framework and provides
some additional lemmas needed for the separation logic framework.›
text ‹A stronger elimination rule for ‹ref››
lemma effect_ref[effect_elims]:
assumes "effect (ref (x::('a::heap))) h h' r"
obtains "r = fst (Ref.alloc x h)" and "h' = snd (Ref.alloc x h)"
proof -
from assms have "execute (ref x) h = Some (r, h')" by (unfold effect_def)
then have "r = fst (Ref.alloc x h)" "h' = snd (Ref.alloc x h)"
by (auto simp add: execute_simps)
then show thesis ..
qed
text ‹Some lemmas about the evaluation of the limit for modifications on
a heap›
lemma lim_Ref_alloc[simp]: "lim (snd (Ref.alloc x h)) = Suc (lim h)"
unfolding Ref.alloc_def
by (simp add: Let_def)
lemma lim_Array_alloc[simp]: "lim (snd (Array.alloc x h)) = Suc (lim h)"
unfolding Array.alloc_def Array.set_def
by (simp add: Let_def)
lemma lim_Array_set[simp]: "lim (Array.set a xs h) = lim h"
unfolding Array.set_def
by (simp add: Let_def)
thm Array.update_def
lemma lim_Array_update[simp]: "lim (Array.update a i x h) = lim h"
unfolding Array.update_def
by (simp add: Let_def)
text ‹Simplification rules for the addresses of new allocated arrays and
references›
lemma addr_of_ref_alloc[simp]:
"addr_of_ref (fst (Ref.alloc x h)) = lim h"
unfolding Ref.alloc_def
by (simp add: Let_def)
lemma addr_of_array_alloc[simp]:
"addr_of_array (fst (Array.alloc x h)) = lim h"
unfolding Array.alloc_def
by (simp add: Let_def)
end