Theory Monitor_Code
theory Monitor_Code
imports "HOL-Library.Code_Target_Nat" "Containers.Containers" Monitor Preliminaries
begin
derive (eq) ceq enat
instantiation enat :: ccompare begin
definition ccompare_enat :: "enat comparator option" where
"ccompare_enat = Some (λx y. if x = y then order.Eq else if x < y then order.Lt else order.Gt)"
instance by intro_classes
(auto simp: ccompare_enat_def split: if_splits intro!: comparator.intro)
end
code_printing
code_module "IArray" ⇀ (OCaml)
‹module IArray : sig
val length' : 'a array -> Z.t
val sub' : 'a array * Z.t -> 'a
end = struct
let length' xs = Z.of_int (Array.length xs);;
let sub' (xs, i) = Array.get xs (Z.to_int i);;
end› for type_constructor iarray constant IArray.length' IArray.sub'
code_reserved OCaml IArray
code_printing
type_constructor iarray ⇀ (OCaml) "_ array"
| constant iarray_of_list ⇀ (OCaml) "Array.of'_list"
| constant IArray.list_of ⇀ (OCaml) "Array.to'_list"
| constant IArray.length' ⇀ (OCaml) "IArray.length'"
| constant IArray.sub' ⇀ (OCaml) "IArray.sub'"
lemma iarray_list_of_inj: "IArray.list_of xs = IArray.list_of ys ⟹ xs = ys"
by (cases xs; cases ys) auto
instantiation iarray :: (ccompare) ccompare
begin
definition ccompare_iarray :: "('a iarray ⇒ 'a iarray ⇒ order) option" where
"ccompare_iarray = (case ID CCOMPARE('a list) of None ⇒ None
| Some c ⇒ Some (λxs ys. c (IArray.list_of xs) (IArray.list_of ys)))"
instance
apply standard
apply unfold_locales
using comparator.sym[OF ID_ccompare'] comparator.weak_eq[OF ID_ccompare']
comparator.comp_trans[OF ID_ccompare'] iarray_list_of_inj
apply (auto simp: ccompare_iarray_def split: option.splits)
apply blast+
done
end
derive (rbt) mapping_impl iarray
definition mk_db :: "String.literal list ⇒ String.literal set" where "mk_db = set"
definition init_vydra_string_enat :: "_ ⇒ _ ⇒ _ ⇒ (String.literal, enat, 'e) vydra" where
"init_vydra_string_enat = init_vydra"
definition run_vydra_string_enat :: " _ ⇒ (String.literal, enat, 'e) vydra ⇒ _" where
"run_vydra_string_enat = run_vydra"
definition progress_enat :: "(String.literal, enat) formula ⇒ enat list ⇒ nat" where
"progress_enat = progress"
definition bounded_future_fmla_enat :: "(String.literal, enat) formula ⇒ bool" where
"bounded_future_fmla_enat = bounded_future_fmla"
definition wf_fmla_enat :: "(String.literal, enat) formula ⇒ bool" where
"wf_fmla_enat = wf_fmla"
definition mdl2mdl'_enat :: "(String.literal, enat) formula ⇒ (String.literal, enat) Preliminaries.formula" where
"mdl2mdl'_enat = mdl2mdl'"
definition interval_enat :: "enat ⇒ enat ⇒ bool ⇒ bool ⇒ enat ℐ" where
"interval_enat = interval"
definition rep_interval_enat :: "enat ℐ ⇒ enat × enat × bool × bool" where
"rep_interval_enat = Rep_ℐ"
definition init_vydra_string_ereal :: "_ ⇒ _ ⇒ _ ⇒ (String.literal, ereal, 'e) vydra" where
"init_vydra_string_ereal = init_vydra"
definition run_vydra_string_ereal :: " _ ⇒ (String.literal, ereal, 'e) vydra ⇒ _" where
"run_vydra_string_ereal = run_vydra"
definition progress_ereal :: "(String.literal, ereal) formula ⇒ ereal list ⇒ real" where
"progress_ereal = progress"
definition bounded_future_fmla_ereal :: "(String.literal, ereal) formula ⇒ bool" where
"bounded_future_fmla_ereal = bounded_future_fmla"
definition wf_fmla_ereal :: "(String.literal, ereal) formula ⇒ bool" where
"wf_fmla_ereal = wf_fmla"
definition mdl2mdl'_ereal :: "(String.literal, ereal) formula ⇒ (String.literal, ereal) Preliminaries.formula" where
"mdl2mdl'_ereal = mdl2mdl'"
definition interval_ereal :: "ereal ⇒ ereal ⇒ bool ⇒ bool ⇒ ereal ℐ" where
"interval_ereal = interval"
definition rep_interval_ereal :: "ereal ℐ ⇒ ereal × ereal × bool × bool" where
"rep_interval_ereal = Rep_ℐ"
lemma tfin_enat_code[code]: "(tfin :: enat set) = Collect_set (λx. x ≠ ∞)"
by (auto simp: tfin_enat_def)
lemma tfin_ereal_code[code]: "(tfin :: ereal set) = Collect_set (λx. x ≠ -∞ ∧ x ≠ ∞)"
by (auto simp: tfin_ereal_def)
lemma Ball_atms[code_unfold]: "Ball (atms r) P = list_all P (collect_subfmlas r [])"
using collect_subfmlas_atms[where ?phis="[]"]
by (auto simp: list_all_def)
lemma MIN_fold: "(MIN x∈set (z # zs). f x) = fold min (map f zs) (f z)"
by (metis Min.set_eq_fold list.set_map list.simps(9))
declare progress.simps(1-8)[code]
lemma progress_matchP_code[code]:
"progress (MatchP I r) ts = (case collect_subfmlas r [] of x # xs ⇒ fold min (map (λf. progress f ts) xs) (progress x ts))"
using collect_subfmlas_atms[where ?r=r and ?phis="[]"] atms_nonempty[of r]
by (auto split: list.splits) (smt (z3) MIN_fold[where ?f="λf. progress f ts"] list.simps(15))
lemma progress_matchF_code[code]:
"progress (MatchF I r) ts = (if length ts = 0 then 0 else
(let k = min (length ts - 1) (case collect_subfmlas r [] of x # xs ⇒ fold min (map (λf. progress f ts) xs) (progress x ts)) in
Min {j ∈ {..k}. memR (ts ! j) (ts ! k) I}))"
by (auto simp: progress_matchP_code[unfolded progress.simps])
export_code init_vydra_string_enat run_vydra_string_enat progress_enat bounded_future_fmla_enat wf_fmla_enat mdl2mdl'_enat
Bool Preliminaries.Bool enat interval_enat rep_interval_enat nat_of_integer integer_of_nat mk_db
in OCaml module_name VYDRA file_prefix "verified"
end