Theory Restricted_Equality
subsection ‹Restricted Equality›
theory Restricted_Equality
imports
Binary_Relations_Order_Base
Binary_Relation_Functions
Equivalence_Relations
Partial_Orders
begin
paragraph ‹Summary›
text ‹Introduces notations and theorems for restricted equalities.
An equality @{term "(=)"} can be restricted to only apply to a subset of its
elements. The restriction can be formulated, for example, by a predicate or a set.›
open_bundle eq_rel_restrict_syntax
begin
syntax
"_eq_restrict_infix" :: "'a ⇒ 'b ⇒ 'a ⇒ bool" (‹(_) =(⇘_⇙) (_)› [51,51,51] 50)
"_eq_restrict" :: "'b ⇒ 'a ⇒ bool" (‹'(=(⇘_⇙)')›)
end
syntax_consts
"_eq_restrict_infix" ⇌ rel_restrict_left and
"_eq_restrict" ⇌ rel_restrict_left
translations
"(=⇘P⇙)" ⇌ "CONST rel_restrict_left (=) P"
"x =⇘P⇙ y" ⇌ "CONST rel_restrict_left (=) P x y"
lemma in_dom_eq_restrict_eq [simp]: "in_dom (=⇘P⇙) = P" by auto
lemma in_codom_eq_restrict_eq [simp]: "in_codom (=⇘P⇙) = P" by auto
lemma in_field_eq_restrict_eq [simp]: "in_field (=⇘P⇙) = P" by auto
paragraph ‹Order Properties›
context
fixes P :: "'a ⇒ bool"
begin
context
begin
lemma reflexive_on_eq_restrict: "reflexive_on P ((=⇘P⇙) :: 'a ⇒ _)" by auto
lemma transitive_eq_restrict: "transitive ((=⇘P⇙) :: 'a ⇒ _)" by auto
lemma symmetric_eq_restrict: "symmetric ((=⇘P⇙) :: 'a ⇒ _)" by auto
lemma antisymmetric_eq_restrict: "antisymmetric ((=⇘P⇙) :: 'a ⇒ _)" by auto
end
context
begin
lemma preorder_on_eq_restrict: "preorder_on P ((=⇘P⇙) :: 'a ⇒ _)"
using reflexive_on_eq_restrict transitive_eq_restrict by auto
lemma partial_equivalence_rel_eq_restrict: "partial_equivalence_rel ((=⇘P⇙) :: 'a ⇒ _)"
using symmetric_eq_restrict transitive_eq_restrict by auto
end
lemma partial_order_on_eq_restrict: "partial_order_on P ((=⇘P⇙) :: 'a ⇒ _)"
using preorder_on_eq_restrict antisymmetric_eq_restrict by auto
lemma equivalence_rel_on_eq_restrict: "equivalence_rel_on P ((=⇘P⇙) :: 'a ⇒ _)"
using partial_equivalence_rel_eq_restrict reflexive_on_eq_restrict by blast
end
end