Theory Linear_Orders
subsection ‹Linear Orders›
theory Linear_Orders
imports
Binary_Relations_Connected
Partial_Orders
begin
definition "linear_order_on ≡ partial_order_on ⊓ connected_on"
lemma linear_order_onI [intro]:
assumes "partial_order_on P R"
and "connected_on P R"
shows "linear_order_on P R"
using assms unfolding linear_order_on_def by auto
lemma linear_order_onE [elim]:
assumes "linear_order_on P R"
obtains "partial_order_on P R" "connected_on P R"
using assms unfolding linear_order_on_def by auto
consts linear_order :: "'a ⇒ bool"
overloading
linear_order ≡ "linear_order :: ('a ⇒ 'a ⇒ bool) ⇒ bool"
begin
definition "(linear_order :: ('a ⇒ 'a ⇒ bool) ⇒ bool) ≡ linear_order_on (⊤ :: 'a ⇒ bool)"
end
lemma linear_order_eq_linear_order_on:
"(linear_order :: ('a ⇒ 'a ⇒ bool) ⇒ bool) = linear_order_on (⊤ :: 'a ⇒ bool)"
unfolding linear_order_def ..
lemma linear_order_eq_linear_order_on_uhint [uhint]:
assumes "P ≡ ⊤ :: 'a ⇒ bool"
shows "(linear_order :: ('a ⇒ 'a ⇒ bool) ⇒ bool) ≡ linear_order_on P"
using assms by (simp add: linear_order_eq_linear_order_on)
context
fixes R :: "'a ⇒ 'a ⇒ bool"
begin
lemma linear_orderI [intro]:
assumes "partial_order R"
and "connected R"
shows "linear_order R"
using assms by (urule linear_order_onI)
lemma linear_orderE [elim]:
assumes "linear_order R"
obtains "partial_order R" "connected R"
using assms by (urule (e) linear_order_onE)
lemma linear_order_on_if_linear_order:
fixes P :: "'a ⇒ bool"
assumes "linear_order R"
shows "linear_order_on P R"
using assms by (elim linear_orderE)
(intro linear_order_onI partial_order_on_if_partial_order connected_on_if_connected)
end
end