Theory Binary_Relations_Irreflexive
subsubsection ‹Irreflexive›
theory Binary_Relations_Irreflexive
imports
Functions_Monotone
begin
consts irreflexive_on :: "'a ⇒ 'b ⇒ bool"
overloading
irreflexive_on_pred ≡ "irreflexive_on :: ('a ⇒ bool) ⇒ ('a ⇒ 'a ⇒ bool) ⇒ bool"
begin
definition "irreflexive_on_pred P R ≡ ∀x : P. ¬(R x x)"
end
lemma irreflexive_onI [intro]:
assumes "⋀x. P x ⟹ ¬(R x x)"
shows "irreflexive_on P R"
using assms unfolding irreflexive_on_pred_def by blast
lemma irreflexive_onD [dest]:
assumes "irreflexive_on P R"
and "P x"
shows "¬(R x x)"
using assms unfolding irreflexive_on_pred_def by blast
lemma antimono_irreflexive_on:
"((≤) ⇒ (≤) ⇛ (≥)) (irreflexive_on :: ('a ⇒ bool) ⇒ ('a ⇒ 'a ⇒ bool) ⇒ bool)"
by blast
consts irreflexive :: "'a ⇒ bool"
overloading
irreflexive ≡ "irreflexive :: ('a ⇒ 'a ⇒ bool) ⇒ bool"
begin
definition "(irreflexive :: ('a ⇒ 'a ⇒ bool) ⇒ bool) ≡ irreflexive_on (⊤ :: 'a ⇒ bool)"
end
lemma irreflexive_eq_irreflexive_on:
"(irreflexive :: ('a ⇒ 'a ⇒ bool) ⇒ _) = irreflexive_on (⊤ :: 'a ⇒ bool)"
unfolding irreflexive_def ..
lemma irreflexive_eq_irreflexive_on_uhint [uhint]:
assumes "P ≡ (⊤ :: 'a ⇒ bool)"
shows "irreflexive :: ('a ⇒ 'a ⇒ bool) ⇒ _ ≡ irreflexive_on P"
using assms by (simp add: irreflexive_eq_irreflexive_on)
lemma irreflexiveI [intro]:
assumes "⋀x. ¬(R x x)"
shows "irreflexive R"
using assms by (urule irreflexive_onI)
lemma irreflexiveD:
assumes "irreflexive R"
shows "¬(R x x)"
using assms by (urule (d) irreflexive_onD where chained = insert) simp
lemma irreflexive_on_if_irreflexive:
fixes P :: "'a ⇒ bool" and R :: "'a ⇒ 'a ⇒ bool"
assumes "irreflexive R"
shows "irreflexive_on P R"
using assms by (intro irreflexive_onI) (blast dest: irreflexiveD)
end