Theory Binary_Relations_Bi_Total
subsubsection ‹Bi-Total›
theory Binary_Relations_Bi_Total
imports
Binary_Relations_Left_Total
Binary_Relations_Surjective
begin
definition "bi_total_on P Q ≡ left_total_on P ⊓ rel_surjective_at Q"
lemma bi_total_onI [intro]:
assumes "left_total_on P R"
and "rel_surjective_at Q R"
shows "bi_total_on P Q R"
unfolding bi_total_on_def using assms by auto
lemma bi_total_onE [elim]:
assumes "bi_total_on P Q R"
obtains "left_total_on P R" "rel_surjective_at Q R"
using assms unfolding bi_total_on_def by auto
lemma bi_total_on_restricts_if_Fun_Rel_iff_if_bi_total_on:
assumes "bi_total_on P Q R"
and "(R ⇛ (⟷)) P Q"
shows "bi_total_on P Q R↾⇘P⇙↿⇘Q⇙"
using assms by force
definition "bi_total ≡ bi_total_on (⊤ :: 'a ⇒ bool) (⊤ :: 'b ⇒ bool) :: ('a ⇒ 'b ⇒ bool) ⇒ bool"
lemma bi_total_eq_bi_total_on:
"(bi_total :: ('a ⇒ 'b ⇒ bool) ⇒ bool) = bi_total_on (⊤ :: 'a ⇒ bool) (⊤ :: 'b ⇒ bool)"
unfolding bi_total_def ..
lemma bi_total_eq_bi_total_on_uhint [uhint]:
assumes "P ≡ (⊤ :: 'a ⇒ bool)"
and "Q ≡ (⊤ :: 'b ⇒ bool)"
shows "(bi_total :: ('a ⇒ 'b ⇒ bool) ⇒ bool) ≡ bi_total_on P Q"
using assms by (simp add: bi_total_eq_bi_total_on)
lemma bi_totalI [intro]:
assumes "left_total R"
and "rel_surjective R"
shows "bi_total R"
using assms by (urule bi_total_onI)
lemma bi_totalE [elim]:
assumes "bi_total R"
obtains "left_total R" "rel_surjective R"
using assms by (urule (e) bi_total_onE)
end