Theory Nat_Miscellanea

section‹Auxiliary results on arithmetic›

theory Nat_Miscellanea
  imports
    Delta_System_Lemma.ZF_Library
begin

hide_const (open) Order.pred
notation add (infixl +ω 65)
notation diff (infixl -ω 65)

text‹Most of these results will get used at some point for the
calculation of arities.›

lemmas nat_succI =  Ord_succ_mem_iff [THEN iffD2,OF nat_into_Ord]

lemma nat_succD : "m  nat   succ(n)  succ(m)  n  m"
  by (drule_tac j="succ(m)" in ltI,auto elim:ltD)

lemmas zero_in_succ = ltD [OF nat_0_le]

lemma in_n_in_nat :  "m  nat  n  m  n  nat"
  by(drule ltI[of "n"],auto simp add: lt_nat_in_nat)

lemma ltI_neg : "x  nat  j  x  j  x  j < x"
  by (simp add: le_iff)

lemma succ_pred_eq  :  "m  nat  m  0   succ(pred(m)) = m"
  by (auto elim: natE)

lemma succ_ltI : "succ(j) < n  j < n"
  by (simp add: succ_leE[OF leI])

lemmas succ_leD = succ_leE[OF leI]

lemma succpred_leI : "n  nat   n  succ(pred(n))"
  by (auto elim: natE)

lemma succpred_n0 : "succ(n)  p  p0"
  by (auto)

lemmas natEin = natE [OF lt_nat_in_nat]

lemmas Un_least_lt_iffn =  Un_least_lt_iff [OF nat_into_Ord nat_into_Ord]

lemma pred_type : "m  nat  n  m  nnat"
  by (rule leE,auto simp:in_n_in_nat ltD)

lemma pred_le : "m  nat  n  succ(m)  pred(n)  m"
  by(rule_tac n="n" in natE,auto simp add:pred_type[of "succ(m)"])

lemma pred_le2 : "n nat  m  nat  pred(n)  m  n  succ(m)"
  by(subgoal_tac "nnat",rule_tac n="n" in natE,auto)

lemma Un_leD1 : "Ord(i) Ord(j) Ord(k)  i  j  k  i  k"
  by (rule Un_least_lt_iff[THEN iffD1[THEN conjunct1]],simp_all)

lemma Un_leD2 : "Ord(i) Ord(j) Ord(k)  i  j k  j  k"
  by (rule Un_least_lt_iff[THEN iffD1[THEN conjunct2]],simp_all)

lemma gt1 : "n  nat  i  n  i  0  i  1  1<i"
  by(rule_tac n="i" in natE,erule in_n_in_nat,auto intro: Ord_0_lt)

lemma pred_mono : "m  nat  n  m  pred(n)  pred(m)"
  by(rule_tac n="n" in natE,auto simp add:le_in_nat,erule_tac n="m" in natE,auto)

lemma succ_mono : "m  nat  n  m  succ(n)  succ(m)"
  by auto

lemma union_abs1 :
  " i  j   i  j = j"
  by (rule Un_absorb1,erule le_imp_subset)

lemma union_abs2 :
  " i  j   j  i = j"
  by (rule Un_absorb2,erule le_imp_subset)

lemma ord_un_max : "Ord(i)  Ord(j)  i  j = max(i,j)"
  using max_def union_abs1 not_lt_iff_le leI union_abs2
  by auto

lemma ord_max_ty : "Ord(i) Ord(j)  Ord(max(i,j))"
  unfolding max_def by simp

lemmas ord_simp_union = ord_un_max ord_max_ty max_def

lemma le_succ : "xnat  xsucc(x)" by simp

lemma le_pred : "xnat  pred(x)x"
  using pred_le[OF _ le_succ] pred_succ_eq
  by simp

lemma not_le_anti_sym : "xnat  y  nat  ¬ xy  ¬yx  y=x"
  using Ord_linear not_le_iff_lt ltD lt_trans
  by auto

lemma Un_le_compat : "o  p  q  r  Ord(o)  Ord(p)  Ord(q)  Ord(r)  o  q  p  r"
  using le_trans[of q r "pr",OF _ Un_upper2_le] le_trans[of o p "pr",OF _ Un_upper1_le]
    ord_simp_union
  by auto

lemma Un_le : "p  r  q  r 
               Ord(p)  Ord(q)  Ord(r) 
                p  q  r"
  using ord_simp_union by auto

lemma Un_leI3 : "o  r  p  r  q  r 
                Ord(o)  Ord(p)  Ord(q)  Ord(r) 
                o  p  q  r"
  using ord_simp_union by auto

lemma diff_mono :
  assumes "m  nat" "nnat" "p  nat" "m < n" "pm"
  shows "m#-p < n#-p"
proof -
  from assms
  have "m#-p  nat" "m#-p +ωp = m"
    using add_diff_inverse2 by simp_all
  with assms
  show ?thesis
    using less_diff_conv[of n p "m #- p",THEN iffD2] by simp
qed

lemma pred_Un:
  "x  nat  y  nat  pred(succ(x)  y) = x  pred(y)"
  "x  nat  y  nat  pred(x  succ(y)) = pred(x)  y"
  using pred_Un_distrib pred_succ_eq by simp_all

lemma le_natI : "j  n  n  nat  jnat"
  by(drule ltD,rule in_n_in_nat,rule nat_succ_iff[THEN iffD2,of n],simp_all)

lemma le_natE : "nnat  j < n   jn"
  by(rule ltE[of j n],simp+)

lemma leD : assumes "nnat" "j  n"
  shows "j < n | j = n"
  using leE[OF jn,of "j<n | j = n"] by auto

lemma pred_nat_eq :
  assumes "nnat"
  shows "pred(n) =  n"
  using assms
proof(induct)
  case 0
  then show ?case by simp
next
  case (succ x)
  then show ?case using pred_succ_eq Ord_Union_succ_eq
    by simp
qed

subsection‹Some results in ordinal arithmetic›
text‹The following results are auxiliary to the proof of
wellfoundedness of the relation termfrecR

lemma max_cong :
  assumes "x  y" "Ord(y)" "Ord(z)"
  shows "max(x,y)  max(y,z)"
proof (cases "y  z")
  case True
  then show ?thesis
    unfolding max_def using assms by simp
next
  case False
  then have "z  y"  using assms not_le_iff_lt leI by simp
  then show ?thesis
    unfolding max_def using assms by simp
qed

lemma max_commutes :
  assumes "Ord(x)" "Ord(y)"
  shows "max(x,y) = max(y,x)"
  using assms Un_commute ord_simp_union(1) ord_simp_union(1)[symmetric] by auto

lemma max_cong2 :
  assumes "x  y" "Ord(y)" "Ord(z)" "Ord(x)"
  shows "max(x,z)  max(y,z)"
proof -
  from assms
  have " x  z  y  z"
    using lt_Ord Ord_Un Un_mono[OF  le_imp_subset[OF xy]]  subset_imp_le by auto
  then show ?thesis
    using  ord_simp_union Ord(x) Ord(z) Ord(y) by simp
qed

lemma max_D1 :
  assumes "x = y" "w < z"  "Ord(x)"  "Ord(w)" "Ord(z)" "max(x,w) = max(y,z)"
  shows "zy"
proof -
  from assms
  have "w <  x  w" using Un_upper2_lt[OF w<z] assms ord_simp_union by simp
  then
  have "w < x" using assms lt_Un_iff[of x w w] lt_not_refl by auto
  then
  have "y = y  z" using assms max_commutes ord_simp_union assms leI by simp
  then
  show ?thesis using Un_leD2 assms by simp
qed

lemma max_D2 :
  assumes "w = y  w = z" "x < y"  "Ord(x)"  "Ord(w)" "Ord(y)" "Ord(z)" "max(x,w) = max(y,z)"
  shows "x<w"
proof -
  from assms
  have "x < z  y" using Un_upper2_lt[OF x<y] by simp
  then
  consider (a) "x < y" | (b) "x < w"
    using assms ord_simp_union by simp
  then show ?thesis proof (cases)
    case a
    consider (c) "w = y" | (d) "w = z"
      using assms by auto
    then show ?thesis proof (cases)
      case c
      with a show ?thesis by simp
    next
      case d
      with a
      show ?thesis
      proof (cases "y <w")
        case True
        then show ?thesis using lt_trans[OF x<y] by simp
      next
        case False
        then
        have "w  y"
          using not_lt_iff_le[OF assms(5) assms(4)] by simp
        with w=z
        have "max(z,y) = y"  unfolding max_def using assms by simp
        with assms
        have "... = x  w" using ord_simp_union max_commutes  by simp
        then show ?thesis using le_Un_iff assms by blast
      qed
    qed
  next
    case b
    then show ?thesis .
  qed
qed

lemma oadd_lt_mono2 :
  assumes  "Ord(n)" "Ord(α)" "Ord(β)" "α < β" "x < n" "y < n" "0 <n"
  shows "n ** α + x < n **β + y"
proof -
  consider (0) "β=0" | (s) γ where  "Ord(γ)" "β = succ(γ)" | (l) "Limit(β)"
    using Ord_cases[OF Ord(β),of ?thesis] by force
  then show ?thesis
  proof cases
    case 0
    then show ?thesis using α<β by auto
  next
    case s
    then
    have "αγ" using α<β using leI by auto
    then
    have "n ** α  n ** γ" using omult_le_mono[OF _ αγ] Ord(n) by simp
    then
    have "n ** α + x < n ** γ + n" using oadd_lt_mono[OF _ x<n] by simp
    also
    have "... = n ** β" using β=succ(_) omult_succ Ord(β) Ord(n) by simp
    finally
    have "n ** α + x < n ** β" by auto
    then
    show ?thesis using oadd_le_self Ord(β) lt_trans2 Ord(n) by auto
  next
    case l
    have "Ord(x)" using x<n lt_Ord by simp
    with l
    have "succ(α) < β" using Limit_has_succ α<β by simp
    have "n ** α + x < n ** α + n"
      using oadd_lt_mono[OF le_refl[OF Ord_omult[OF _ Ord(α)]] x<n] Ord(n) by simp
    also
    have "... = n ** succ(α)" using omult_succ Ord(α) Ord(n) by simp
    finally
    have "n ** α + x < n ** succ(α)" by simp
    with succ(α) < β
    have "n ** α + x < n ** β" using lt_trans omult_lt_mono Ord(n) 0<n  by auto
    then show ?thesis using oadd_le_self Ord(β) lt_trans2 Ord(n) by auto
  qed
qed
end