Theory Superposition_Alternative_Rules
theory Superposition_Alternative_Rules
imports Superposition
begin
context superposition_calculus
begin
subsubsection ‹Alternative Specification of the Superposition Rule›
inductive superposition' ::
"('t, 'v, 'ty) typed_clause ⇒
('t, 'v, 'ty) typed_clause ⇒
('t, 'v, 'ty) typed_clause ⇒ bool" where
superposition'I:
"(term.exists_nonground ⟹ infinite_variables_per_type 𝒱⇩1) ⟹
(term.exists_nonground ⟹ infinite_variables_per_type 𝒱⇩2) ⟹
term.is_renaming ρ⇩1 ⟹
term.is_renaming ρ⇩2 ⟹
clause.vars (E ⋅ ρ⇩1) ∩ clause.vars (D ⋅ ρ⇩2) = {} ⟹
E = add_mset l⇩1 E' ⟹
D = add_mset l⇩2 D' ⟹
𝒫 ∈ {Pos, Neg} ⟹
l⇩1 = 𝒫 (Upair c⇩1⟨t⇩1⟩ t⇩1') ⟹
l⇩2 = t⇩2 ≈ t⇩2' ⟹
¬ term.is_Var t⇩1 ⟹
type_preserving_on (clause.vars (E ⋅ ρ⇩1) ∪ clause.vars (D ⋅ ρ⇩2)) 𝒱⇩3 μ ⟹
term.is_imgu μ {{t⇩1 ⋅t ρ⇩1, t⇩2 ⋅t ρ⇩2}} ⟹
∀x ∈ clause.vars E. 𝒱⇩1 x = 𝒱⇩3 (term.rename ρ⇩1 x) ⟹
∀x ∈ clause.vars D. 𝒱⇩2 x = 𝒱⇩3 (term.rename ρ⇩2 x) ⟹
type_preserving_on (clause.vars E) 𝒱⇩1 ρ⇩1 ⟹
type_preserving_on (clause.vars D) 𝒱⇩2 ρ⇩2 ⟹
(clause.weakly_welltyped 𝒱⇩3 C ⟹ literal.weakly_welltyped 𝒱⇩2 l⇩2) ⟹
¬ (E ⋅ ρ⇩1 ⊙ μ ≼⇩c D ⋅ ρ⇩2 ⊙ μ) ⟹
(𝒫 = Pos ∧ select E = {#} ∧ is_strictly_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (E ⋅ ρ⇩1 ⊙ μ) ∨
𝒫 = Neg ∧ (select E = {#} ∧ is_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (E ⋅ ρ⇩1 ⊙ μ) ∨
is_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) ((select E) ⋅ ρ⇩1 ⊙ μ))) ⟹
select D = {#} ⟹
is_strictly_maximal (l⇩2 ⋅l ρ⇩2 ⊙ μ) (D ⋅ ρ⇩2 ⊙ μ) ⟹
¬ (c⇩1⟨t⇩1⟩ ⋅t ρ⇩1 ⊙ μ ≼⇩t t⇩1' ⋅t ρ⇩1 ⊙ μ) ⟹
¬ (t⇩2 ⋅t ρ⇩2 ⊙ μ ≼⇩t t⇩2' ⋅t ρ⇩2 ⊙ μ) ⟹
C = add_mset (𝒫 (Upair (c⇩1 ⋅t⇩c ρ⇩1)⟨t⇩2' ⋅t ρ⇩2⟩ (t⇩1' ⋅t ρ⇩1))) (E' ⋅ ρ⇩1 + D' ⋅ ρ⇩2) ⋅ μ ⟹
superposition' (𝒱⇩2, D) (𝒱⇩1, E) (𝒱⇩3, C)"
lemma superposition_eq_superposition': "superposition = superposition'"
proof (intro ext iffI)
fix D E C
assume "superposition D E C"
then show "superposition' D E C"
proof (cases D E C rule: superposition.cases)
case (superpositionI 𝒫 𝒱⇩1 𝒱⇩2 ρ⇩1 ρ⇩2 E D t⇩1 𝒱⇩3 μ t⇩2 c⇩1 t⇩1' t⇩2' l⇩1 l⇩2 C E' D')
show ?thesis
proof (unfold superpositionI(1-3), rule superposition'I; (rule superpositionI)?)
show "𝒫 = Pos ∧ select E = {#} ∧ is_strictly_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (E ⋅ ρ⇩1 ⊙ μ) ∨
𝒫 = Neg ∧ (select E = {#} ∧ is_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (E ⋅ ρ⇩1 ⊙ μ) ∨
is_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (select E ⋅ ρ⇩1 ⊙ μ))"
using superpositionI
by fastforce
qed
qed
next
fix D E C
assume "superposition' D E C"
then show "superposition D E C"
proof (cases D E C rule: superposition'.cases)
case (superposition'I 𝒱⇩1 𝒱⇩2 ρ⇩1 ρ⇩2 E D l⇩1 E' l⇩2 D' 𝒫 c⇩1 t⇩1 t⇩1' t⇩2 t⇩2' 𝒱⇩3 μ C)
show ?thesis
proof (unfold superposition'I(1-3), rule superpositionI; (rule superposition'I)?)
show
"𝒫 = Pos ⟹ select E = {#}"
"𝒫 = Pos ⟹ is_strictly_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (E ⋅ ρ⇩1 ⊙ μ)"
"𝒫 = Neg ⟹ select E = {#} ⟹ is_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (E ⋅ ρ⇩1 ⊙ μ)"
"𝒫 = Neg ⟹ select E ≠ {#} ⟹ is_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (select E ⋅ ρ⇩1 ⊙ μ)"
using superposition'I(23) is_maximal_not_empty
by auto
qed
qed
qed
inductive pos_superposition ::
"('t, 'v, 'ty) typed_clause ⇒ ('t, 'v, 'ty) typed_clause ⇒ ('t, 'v, 'ty) typed_clause ⇒ bool"
where
pos_superpositionI:
"(term.exists_nonground ⟹ infinite_variables_per_type 𝒱⇩1) ⟹
(term.exists_nonground ⟹ infinite_variables_per_type 𝒱⇩2) ⟹
term.is_renaming ρ⇩1 ⟹
term.is_renaming ρ⇩2 ⟹
clause.vars (E ⋅ ρ⇩1) ∩ clause.vars (D ⋅ ρ⇩2) = {} ⟹
E = add_mset l⇩1 E' ⟹
D = add_mset l⇩2 D' ⟹
l⇩1 = c⇩1⟨t⇩1⟩ ≈ t⇩1' ⟹
l⇩2 = t⇩2 ≈ t⇩2' ⟹
¬ term.is_Var t⇩1 ⟹
type_preserving_on (clause.vars (E ⋅ ρ⇩1) ∪ clause.vars (D ⋅ ρ⇩2)) 𝒱⇩3 μ ⟹
term.is_imgu μ {{t⇩1 ⋅t ρ⇩1, t⇩2 ⋅t ρ⇩2}} ⟹
∀x ∈ clause.vars E. 𝒱⇩1 x = 𝒱⇩3 (term.rename ρ⇩1 x) ⟹
∀x ∈ clause.vars D. 𝒱⇩2 x = 𝒱⇩3 (term.rename ρ⇩2 x) ⟹
type_preserving_on (clause.vars E) 𝒱⇩1 ρ⇩1 ⟹
type_preserving_on (clause.vars D) 𝒱⇩2 ρ⇩2 ⟹
(clause.weakly_welltyped 𝒱⇩3 C ⟹ literal.weakly_welltyped 𝒱⇩2 l⇩2) ⟹
¬ (E ⋅ ρ⇩1 ⊙ μ ≼⇩c D ⋅ ρ⇩2 ⊙ μ) ⟹
select E = {#} ⟹
is_strictly_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (E ⋅ ρ⇩1 ⊙ μ) ⟹
select D = {#} ⟹
is_strictly_maximal (l⇩2 ⋅l ρ⇩2 ⊙ μ) (D ⋅ ρ⇩2 ⊙ μ) ⟹
¬ (c⇩1⟨t⇩1⟩ ⋅t ρ⇩1 ⊙ μ ≼⇩t t⇩1' ⋅t ρ⇩1 ⊙ μ) ⟹
¬ (t⇩2 ⋅t ρ⇩2 ⊙ μ ≼⇩t t⇩2' ⋅t ρ⇩2 ⊙ μ) ⟹
C = add_mset ((c⇩1 ⋅t⇩c ρ⇩1)⟨t⇩2' ⋅t ρ⇩2⟩ ≈ (t⇩1' ⋅t ρ⇩1)) (E' ⋅ ρ⇩1 + D' ⋅ ρ⇩2) ⋅ μ ⟹
pos_superposition (𝒱⇩2, D) (𝒱⇩1, E) (𝒱⇩3, C)"
lemma superposition_if_pos_superposition:
assumes "pos_superposition D E C"
shows "superposition D E C"
using assms
proof (cases rule: pos_superposition.cases)
case (pos_superpositionI 𝒱⇩1 𝒱⇩2 ρ⇩1 ρ⇩2 E D l⇩1 E' l⇩2 D' c⇩1 t⇩1 t⇩1' t⇩2 t⇩2' 𝒱⇩3 μ C)
then show ?thesis
using superpositionI[of Pos 𝒱⇩1 𝒱⇩2 ρ⇩1 ρ⇩2 E D t⇩1 𝒱⇩3 μ t⇩2 c⇩1 t⇩1' t⇩2' l⇩1 l⇩2 C E' D']
by blast
qed
inductive neg_superposition ::
"('t, 'v, 'ty) typed_clause ⇒ ('t, 'v, 'ty) typed_clause ⇒ ('t, 'v, 'ty) typed_clause ⇒ bool"
where
neg_superpositionI:
"(term.exists_nonground ⟹ infinite_variables_per_type 𝒱⇩1) ⟹
(term.exists_nonground ⟹ infinite_variables_per_type 𝒱⇩2) ⟹
term.is_renaming ρ⇩1 ⟹
term.is_renaming ρ⇩2 ⟹
clause.vars (E ⋅ ρ⇩1) ∩ clause.vars (D ⋅ ρ⇩2) = {} ⟹
E = add_mset l⇩1 E' ⟹
D = add_mset l⇩2 D' ⟹
l⇩1 = c⇩1⟨t⇩1⟩ !≈ t⇩1' ⟹
l⇩2 = t⇩2 ≈ t⇩2' ⟹
¬ term.is_Var t⇩1 ⟹
type_preserving_on (clause.vars (E ⋅ ρ⇩1) ∪ clause.vars (D ⋅ ρ⇩2)) 𝒱⇩3 μ ⟹
term.is_imgu μ {{t⇩1 ⋅t ρ⇩1, t⇩2 ⋅t ρ⇩2}} ⟹
∀x ∈ clause.vars E. 𝒱⇩1 x = 𝒱⇩3 (term.rename ρ⇩1 x) ⟹
∀x ∈ clause.vars D. 𝒱⇩2 x = 𝒱⇩3 (term.rename ρ⇩2 x) ⟹
type_preserving_on (clause.vars E) 𝒱⇩1 ρ⇩1 ⟹
type_preserving_on (clause.vars D) 𝒱⇩2 ρ⇩2 ⟹
(clause.weakly_welltyped 𝒱⇩3 C ⟹ literal.weakly_welltyped 𝒱⇩2 l⇩2) ⟹
¬ (E ⋅ ρ⇩1 ⊙ μ ≼⇩c D ⋅ ρ⇩2 ⊙ μ) ⟹
(select E = {#} ⟹ is_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) (E ⋅ ρ⇩1 ⊙ μ)) ⟹
(select E ≠ {#} ⟹ is_maximal (l⇩1 ⋅l ρ⇩1 ⊙ μ) ((select E) ⋅ ρ⇩1 ⊙ μ)) ⟹
select D = {#} ⟹
is_strictly_maximal (l⇩2 ⋅l ρ⇩2 ⊙ μ) (D ⋅ ρ⇩2 ⊙ μ) ⟹
¬ (c⇩1⟨t⇩1⟩ ⋅t ρ⇩1 ⊙ μ ≼⇩t t⇩1' ⋅t ρ⇩1 ⊙ μ) ⟹
¬ (t⇩2 ⋅t ρ⇩2 ⊙ μ ≼⇩t t⇩2' ⋅t ρ⇩2 ⊙ μ) ⟹
C = add_mset ((c⇩1 ⋅t⇩c ρ⇩1)⟨t⇩2' ⋅t ρ⇩2⟩ !≈ (t⇩1' ⋅t ρ⇩1)) (E' ⋅ ρ⇩1 + D' ⋅ ρ⇩2) ⋅ μ ⟹
neg_superposition (𝒱⇩2, D) (𝒱⇩1, E) (𝒱⇩3, C)"
lemma superposition_if_neg_superposition:
assumes "neg_superposition E D C"
shows "superposition E D C"
using assms
proof (cases E D C rule: neg_superposition.cases)
case (neg_superpositionI 𝒱⇩1 𝒱⇩2 ρ⇩1 ρ⇩2 E D l⇩1 E' l⇩2 D' c⇩1 t⇩1 t⇩1' t⇩2 t⇩2' 𝒱⇩3 μ C)
then show ?thesis
using
superpositionI[of Neg 𝒱⇩1 𝒱⇩2 ρ⇩1 ρ⇩2 E D t⇩1 𝒱⇩3 μ t⇩2 c⇩1 t⇩1' t⇩2' l⇩1 l⇩2 C E' D']
literals_distinct(2)
by blast
qed
lemma superposition_iff_pos_or_neg:
"superposition D E C ⟷ pos_superposition D E C ∨ neg_superposition D E C"
proof (rule iffI)
assume "superposition D E C"
thus "pos_superposition D E C ∨ neg_superposition D E C"
proof (cases D E C rule: superposition.cases)
case (superpositionI 𝒫 𝒱⇩1 𝒱⇩2 ρ⇩1 ρ⇩2 E D t⇩1 𝒱⇩3 μ t⇩2 c⇩1 t⇩1' t⇩2' l⇩1 l⇩2 C E' D')
show ?thesis
proof(cases "𝒫 = Pos")
case True
then show ?thesis
using
superpositionI
pos_superpositionI[of 𝒱⇩1 𝒱⇩2 ρ⇩1 ρ⇩2 E D l⇩1 E' l⇩2 D' c⇩1 t⇩1 t⇩1' t⇩2 t⇩2' 𝒱⇩3 μ C]
unfolding superpositionI(1-3)
by argo
next
case False
then show ?thesis
using
superpositionI
neg_superpositionI[of 𝒱⇩1 𝒱⇩2 ρ⇩1 ρ⇩2 E D l⇩1 E' l⇩2 D' c⇩1 t⇩1 t⇩1' t⇩2 t⇩2' 𝒱⇩3 μ C]
using superpositionI(4)
unfolding superpositionI(1-3)
by blast
qed
qed
next
assume "pos_superposition D E C ∨ neg_superposition D E C"
thus "superposition D E C"
using superposition_if_neg_superposition superposition_if_pos_superposition
by fast
qed
end
end