Theory CFG
section ‹CFG›
theory CFG imports BasicDefs begin
subsection ‹The abstract CFG›
locale CFG =
fixes sourcenode :: "'edge ⇒ 'node"
fixes targetnode :: "'edge ⇒ 'node"
fixes kind :: "'edge ⇒ 'state edge_kind"
fixes valid_edge :: "'edge ⇒ bool"
fixes Entry::"'node" (‹'('_Entry'_')›)
assumes Entry_target [dest]: "⟦valid_edge a; targetnode a = (_Entry_)⟧ ⟹ False"
and edge_det:
"⟦valid_edge a; valid_edge a'; sourcenode a = sourcenode a';
targetnode a = targetnode a'⟧ ⟹ a = a'"
begin
definition valid_node :: "'node ⇒ bool"
where "valid_node n ≡
(∃a. valid_edge a ∧ (n = sourcenode a ∨ n = targetnode a))"
lemma [simp]: "valid_edge a ⟹ valid_node (sourcenode a)"
by(fastforce simp:valid_node_def)
lemma [simp]: "valid_edge a ⟹ valid_node (targetnode a)"
by(fastforce simp:valid_node_def)
subsection ‹CFG paths and lemmas›
inductive path :: "'node ⇒ 'edge list ⇒ 'node ⇒ bool"
(‹_ -_→* _› [51,0,0] 80)
where
empty_path:"valid_node n ⟹ n -[]→* n"
| Cons_path:
"⟦n'' -as→* n'; valid_edge a; sourcenode a = n; targetnode a = n''⟧
⟹ n -a#as→* n'"
lemma path_valid_node:
assumes "n -as→* n'" shows "valid_node n" and "valid_node n'"
using ‹n -as→* n'›
by(induct rule:path.induct,auto)
lemma empty_path_nodes [dest]:"n -[]→* n' ⟹ n = n'"
by(fastforce elim:path.cases)
lemma path_valid_edges:"n -as→* n' ⟹ ∀a ∈ set as. valid_edge a"
by(induct rule:path.induct) auto
lemma path_edge:"valid_edge a ⟹ sourcenode a -[a]→* targetnode a"
by(fastforce intro:Cons_path empty_path)
lemma path_Entry_target [dest]:
assumes "n -as→* (_Entry_)"
shows "n = (_Entry_)" and "as = []"
using ‹n -as→* (_Entry_)›
proof(induct n as n'≡"(_Entry_)" rule:path.induct)
case (Cons_path n'' as a n)
from ‹targetnode a = n''› ‹valid_edge a› ‹n'' = (_Entry_)› have False
by -(rule Entry_target,simp_all)
{ case 1
with ‹False› show ?case ..
next
case 2
with ‹False› show ?case ..
}
qed simp_all
lemma path_Append:"⟦n -as→* n''; n'' -as'→* n'⟧
⟹ n -as@as'→* n'"
by(induct rule:path.induct,auto intro:Cons_path)
lemma path_split:
assumes "n -as@a#as'→* n'"
shows "n -as→* sourcenode a" and "valid_edge a" and "targetnode a -as'→* n'"
using ‹n -as@a#as'→* n'›
proof(induct as arbitrary:n)
case Nil case 1
thus ?case by(fastforce elim:path.cases intro:empty_path)
next
case Nil case 2
thus ?case by(fastforce elim:path.cases intro:path_edge)
next
case Nil case 3
thus ?case by(fastforce elim:path.cases)
next
case (Cons ax asx)
note IH1 = ‹⋀n. n -asx@a#as'→* n' ⟹ n -asx→* sourcenode a›
note IH2 = ‹⋀n. n -asx@a#as'→* n' ⟹ valid_edge a›
note IH3 = ‹⋀n. n -asx@a#as'→* n' ⟹ targetnode a -as'→* n'›
{ case 1
hence "sourcenode ax = n" and "targetnode ax -asx@a#as'→* n'" and "valid_edge ax"
by(auto elim:path.cases)
from IH1[OF ‹ targetnode ax -asx@a#as'→* n'›]
have "targetnode ax -asx→* sourcenode a" .
with ‹sourcenode ax = n› ‹valid_edge ax› show ?case by(fastforce intro:Cons_path)
next
case 2 hence "targetnode ax -asx@a#as'→* n'" by(auto elim:path.cases)
from IH2[OF this] show ?case .
next
case 3 hence "targetnode ax -asx@a#as'→* n'" by(auto elim:path.cases)
from IH3[OF this] show ?case .
}
qed
lemma path_split_Cons:
assumes "n -as→* n'" and "as ≠ []"
obtains a' as' where "as = a'#as'" and "n = sourcenode a'"
and "valid_edge a'" and "targetnode a' -as'→* n'"
proof -
from ‹as ≠ []› obtain a' as' where "as = a'#as'" by(cases as) auto
with ‹n -as→* n'› have "n -[]@a'#as'→* n'" by simp
hence "n -[]→* sourcenode a'" and "valid_edge a'" and "targetnode a' -as'→* n'"
by(rule path_split)+
from ‹n -[]→* sourcenode a'› have "n = sourcenode a'" by fast
with ‹as = a'#as'› ‹valid_edge a'› ‹targetnode a' -as'→* n'› that show ?thesis
by fastforce
qed
lemma path_split_snoc:
assumes "n -as→* n'" and "as ≠ []"
obtains a' as' where "as = as'@[a']" and "n -as'→* sourcenode a'"
and "valid_edge a'" and "n' = targetnode a'"
proof -
from ‹as ≠ []› obtain a' as' where "as = as'@[a']" by(cases as rule:rev_cases) auto
with ‹n -as→* n'› have "n -as'@a'#[]→* n'" by simp
hence "n -as'→* sourcenode a'" and "valid_edge a'" and "targetnode a' -[]→* n'"
by(rule path_split)+
from ‹targetnode a' -[]→* n'› have "n' = targetnode a'" by fast
with ‹as = as'@[a']› ‹valid_edge a'› ‹n -as'→* sourcenode a'› that show ?thesis
by fastforce
qed
lemma path_split_second:
assumes "n -as@a#as'→* n'" shows "sourcenode a -a#as'→* n'"
proof -
from ‹n -as@a#as'→* n'› have "valid_edge a" and "targetnode a -as'→* n'"
by(auto intro:path_split)
thus ?thesis by(fastforce intro:Cons_path)
qed
lemma path_Entry_Cons:
assumes "(_Entry_) -as→* n'" and "n' ≠ (_Entry_)"
obtains n a where "sourcenode a = (_Entry_)" and "targetnode a = n"
and "n -tl as→* n'" and "valid_edge a" and "a = hd as"
proof -
from ‹(_Entry_) -as→* n'› ‹n' ≠ (_Entry_)› have "as ≠ []"
by(cases as,auto elim:path.cases)
with ‹(_Entry_) -as→* n'› obtain a' as' where "as = a'#as'"
and "(_Entry_) = sourcenode a'" and "valid_edge a'" and "targetnode a' -as'→* n'"
by(erule path_split_Cons)
with that show ?thesis by fastforce
qed
lemma path_det:
"⟦n -as→* n'; n -as→* n''⟧ ⟹ n' = n''"
proof(induct as arbitrary:n)
case Nil thus ?case by(auto elim:path.cases)
next
case (Cons a' as')
note IH = ‹⋀n. ⟦n -as'→* n'; n -as'→* n''⟧ ⟹ n' = n''›
from ‹n -a'#as'→* n'› have "targetnode a' -as'→* n'"
by(fastforce elim:path_split_Cons)
from ‹n -a'#as'→* n''› have "targetnode a' -as'→* n''"
by(fastforce elim:path_split_Cons)
from IH[OF ‹targetnode a' -as'→* n'› this] show ?thesis .
qed
definition
sourcenodes :: "'edge list ⇒ 'node list"
where "sourcenodes xs ≡ map sourcenode xs"
definition
kinds :: "'edge list ⇒ 'state edge_kind list"
where "kinds xs ≡ map kind xs"
definition
targetnodes :: "'edge list ⇒ 'node list"
where "targetnodes xs ≡ map targetnode xs"
lemma path_sourcenode:
"⟦n -as→* n'; as ≠ []⟧ ⟹ hd (sourcenodes as) = n"
by(fastforce elim:path_split_Cons simp:sourcenodes_def)
lemma path_targetnode:
"⟦n -as→* n'; as ≠ []⟧ ⟹ last (targetnodes as) = n'"
by(fastforce elim:path_split_snoc simp:targetnodes_def)
lemma sourcenodes_is_n_Cons_butlast_targetnodes:
"⟦n -as→* n'; as ≠ []⟧ ⟹
sourcenodes as = n#(butlast (targetnodes as))"
proof(induct as arbitrary:n)
case Nil thus ?case by simp
next
case (Cons a' as')
note IH = ‹⋀n. ⟦n -as'→* n'; as' ≠ []⟧
⟹ sourcenodes as' = n#(butlast (targetnodes as'))›
from ‹n -a'#as'→* n'› have "n = sourcenode a'" and "targetnode a' -as'→* n'"
by(auto elim:path_split_Cons)
show ?case
proof(cases "as' = []")
case True
with ‹targetnode a' -as'→* n'› have "targetnode a' = n'" by fast
with True ‹n = sourcenode a'› show ?thesis
by(simp add:sourcenodes_def targetnodes_def)
next
case False
from IH[OF ‹targetnode a' -as'→* n'› this]
have "sourcenodes as' = targetnode a' # butlast (targetnodes as')" .
with ‹n = sourcenode a'› False show ?thesis
by(simp add:sourcenodes_def targetnodes_def)
qed
qed
lemma targetnodes_is_tl_sourcenodes_App_n':
"⟦n -as→* n'; as ≠ []⟧ ⟹
targetnodes as = (tl (sourcenodes as))@[n']"
proof(induct as arbitrary:n' rule:rev_induct)
case Nil thus ?case by simp
next
case (snoc a' as')
note IH = ‹⋀n'. ⟦n -as'→* n'; as' ≠ []⟧
⟹ targetnodes as' = tl (sourcenodes as') @ [n']›
from ‹n -as'@[a']→* n'› have "n -as'→* sourcenode a'" and "n' = targetnode a'"
by(auto elim:path_split_snoc)
show ?case
proof(cases "as' = []")
case True
with ‹n -as'→* sourcenode a'› have "n = sourcenode a'" by fast
with True ‹n' = targetnode a'› show ?thesis
by(simp add:sourcenodes_def targetnodes_def)
next
case False
from IH[OF ‹n -as'→* sourcenode a'› this]
have "targetnodes as' = tl (sourcenodes as')@[sourcenode a']" .
with ‹n' = targetnode a'› False show ?thesis
by(simp add:sourcenodes_def targetnodes_def)
qed
qed
lemma Entry_sourcenode_hd:
assumes "n -as→* n'" and "(_Entry_) ∈ set (sourcenodes as)"
shows "n = (_Entry_)" and "(_Entry_) ∉ set (sourcenodes (tl as))"
using ‹n -as→* n'› ‹(_Entry_) ∈ set (sourcenodes as)›
proof(induct rule:path.induct)
case (empty_path n) case 1
thus ?case by(simp add:sourcenodes_def)
next
case (empty_path n) case 2
thus ?case by(simp add:sourcenodes_def)
next
case (Cons_path n'' as n' a n)
note IH1 = ‹(_Entry_) ∈ set(sourcenodes as) ⟹ n'' = (_Entry_)›
note IH2 = ‹(_Entry_) ∈ set(sourcenodes as) ⟹ (_Entry_) ∉ set(sourcenodes(tl as))›
have "(_Entry_) ∉ set (sourcenodes(tl(a#as)))"
proof
assume "(_Entry_) ∈ set (sourcenodes (tl (a#as)))"
hence "(_Entry_) ∈ set (sourcenodes as)" by simp
from IH1[OF this] have "n'' = (_Entry_)" by simp
with ‹targetnode a = n''› ‹valid_edge a› show False by -(erule Entry_target,simp)
qed
hence "(_Entry_) ∉ set (sourcenodes(tl(a#as)))" by fastforce
{ case 1
with ‹(_Entry_) ∉ set (sourcenodes(tl(a#as)))› ‹sourcenode a = n›
show ?case by(simp add:sourcenodes_def)
next
case 2
with ‹(_Entry_) ∉ set (sourcenodes(tl(a#as)))› ‹sourcenode a = n›
show ?case by(simp add:sourcenodes_def)
}
qed
end
end