Theory HOL-Data_Structures.Heaps
section ‹Heaps›
theory Heaps
imports
"HOL-Library.Tree_Multiset"
Priority_Queue_Specs
begin
text ‹Heap = priority queue on trees:›
locale Heap =
fixes insert :: "('a::linorder) ⇒ 'a tree ⇒ 'a tree"
and del_min :: "'a tree ⇒ 'a tree"
assumes mset_insert: "heap q ⟹ mset_tree (insert x q) = {#x#} + mset_tree q"
and mset_del_min: "⟦ heap q; q ≠ Leaf ⟧ ⟹ mset_tree (del_min q) = mset_tree q - {#value q#}"
and heap_insert: "heap q ⟹ heap(insert x q)"
and heap_del_min: "heap q ⟹ heap(del_min q)"
begin
definition empty :: "'a tree" where
"empty = Leaf"
fun is_empty :: "'a tree ⇒ bool" where
"is_empty t = (t = Leaf)"
sublocale Priority_Queue where empty = empty and is_empty = is_empty and insert = insert
and get_min = "value" and del_min = del_min and invar = heap and mset = mset_tree
proof (standard, goal_cases)
case 1 thus ?case by (simp add: empty_def)
next
case 2 thus ?case by(auto)
next
case 3 thus ?case by(simp add: mset_insert)
next
case 4 thus ?case by(simp add: mset_del_min)
next
case 5 thus ?case by(auto simp: neq_Leaf_iff Min_insert2 simp del: Un_iff)
next
case 6 thus ?case by(simp add: empty_def)
next
case 7 thus ?case by(simp add: heap_insert)
next
case 8 thus ?case by(simp add: heap_del_min)
qed
end
text ‹Once you have ‹merge›, ‹insert› and ‹del_min› are easy:›
locale Heap_Merge =
fixes merge :: "'a::linorder tree ⇒ 'a tree ⇒ 'a tree"
assumes mset_merge: "⟦ heap q1; heap q2 ⟧ ⟹ mset_tree (merge q1 q2) = mset_tree q1 + mset_tree q2"
and invar_merge: "⟦ heap q1; heap q2 ⟧ ⟹ heap (merge q1 q2)"
begin
fun insert :: "'a ⇒ 'a tree ⇒ 'a tree" where
"insert x t = merge (Node Leaf x Leaf) t"
fun del_min :: "'a tree ⇒ 'a tree" where
"del_min Leaf = Leaf" |
"del_min (Node l x r) = merge l r"
interpretation Heap insert del_min
proof(standard, goal_cases)
case 1 thus ?case by(simp add:mset_merge)
next
case (2 q) thus ?case by(cases q)(auto simp: mset_merge)
next
case 3 thus ?case by (simp add: invar_merge)
next
case (4 q) thus ?case by (cases q)(auto simp: invar_merge)
qed
sublocale PQM: Priority_Queue_Merge where empty = empty and is_empty = is_empty and insert = insert
and get_min = "value" and del_min = del_min and invar = heap and mset = mset_tree and merge = merge
proof(standard, goal_cases)
case 1 thus ?case by (simp add: mset_merge)
next
case 2 thus ?case by (simp add: invar_merge)
qed
end
end