Theory Saturation_Framework_Extensions.Soundness
section ‹Soundness›
theory Soundness
imports Saturation_Framework.Calculus
begin
text ‹
Although consistency-preservation usually suffices, soundness is a more precise concept and is
sometimes useful.
›
locale sound_inference_system = inference_system + consequence_relation +
assumes
sound: ‹ι ∈ Inf ⟹ set (prems_of ι) ⊨ {concl_of ι}›
begin
lemma Inf_consist_preserving:
assumes n_cons: "¬ N ⊨ Bot"
shows "¬ N ∪ concl_of ` Inf_from N ⊨ Bot"
proof -
have "N ⊨ concl_of ` Inf_from N"
using sound unfolding Inf_from_def image_def Bex_def mem_Collect_eq
by (smt (verit, best) all_formulas_entailed entails_trans mem_Collect_eq subset_entailed)
then show ?thesis
using n_cons entails_trans_strong by blast
qed
end
text ‹
The limit of a derivation based on a redundancy criterion is satisfiable if and only if the initial
set is satisfiable. This material is partly based on Section 4.1 of Bachmair and Ganzinger's
\emph{Handbook} chapter, but adapted to the saturation framework of Waldmann et al.
›
context calculus
begin
text ‹
The next three lemmas correspond to Lemma 4.2:
›
lemma Red_F_Sup_subset_Red_F_Liminf:
"chain (⊳) Ns ⟹ Red_F (Sup_llist Ns) ⊆ Red_F (Liminf_llist Ns)"
by (metis Liminf_llist_subset_Sup_llist Red_in_Sup Un_absorb1 calculus.Red_F_of_Red_F_subset
calculus_axioms double_diff sup_ge2)
lemma Red_I_Sup_subset_Red_I_Liminf:
"chain (⊳) Ns ⟹ Red_I (Sup_llist Ns) ⊆ Red_I (Liminf_llist Ns)"
by (metis Liminf_llist_subset_Sup_llist Red_I_of_Red_F_subset Red_in_Sup double_diff subset_refl)
text ‹
Proof idea due to Uwe Waldmann:
›
lemma unsat_limit_iff:
assumes
chain_red: "chain (⊳) Ns" and
chain_ent: "chain (⊨) Ns"
shows "Liminf_llist Ns ⊨ Bot ⟷ lhd Ns ⊨ Bot"
proof
assume "Liminf_llist Ns ⊨ Bot"
moreover have "Sup_llist Ns ⊨ Liminf_llist Ns"
by (simp add: Liminf_llist_subset_Sup_llist subset_entailed)
moreover have "lhd Ns ⊨ Sup_llist Ns"
proof -
have "lhd Ns ⊨ lnth Ns i" if "i < llength Ns" for i
using that
proof (induct i)
case 0
then show ?case
using chain_ent chain_not_lnull lhd_conv_lnth subset_entailed by fastforce
next
case (Suc i)
then show ?case
using Suc_ile_eq chain_ent chain_lnth_rel entails_trans less_le by blast
qed
thus ?thesis
unfolding Sup_llist_def using entail_unions by fastforce
qed
ultimately show "lhd Ns ⊨ Bot"
using entails_trans by blast
next
assume "lhd Ns ⊨ Bot"
then have "Sup_llist Ns ⊨ Bot"
by (meson chain_ent chain_not_lnull entails_trans lhd_subset_Sup_llist subset_entailed)
then have "Sup_llist Ns - Red_F (Sup_llist Ns) ⊨ Bot"
using Red_F_Bot entail_set_all_formulas by blast
then have "Liminf_llist Ns - Red_F (Sup_llist Ns) ⊨ Bot"
by (metis (no_types, lifting) ext Diff_eq_empty_iff Diff_partition Diff_subset
Liminf_llist_subset_Sup_llist Red_in_Sup Un_Diff chain_red)
then show "Liminf_llist Ns ⊨ Bot"
by (meson Diff_subset entails_trans subset_entailed)
qed
text ‹Some easy consequences:›
lemma Red_F_limit_Sup: "chain (⊳) Ns ⟹ Red_F (Liminf_llist Ns) = Red_F (Sup_llist Ns)"
by (metis Liminf_llist_subset_Sup_llist Red_F_of_Red_F_subset Red_F_of_subset Red_in_Sup
double_diff order_refl subset_antisym)
lemma Red_I_limit_Sup: "chain (⊳) Ns ⟹ Red_I (Liminf_llist Ns) = Red_I (Sup_llist Ns)"
by (metis Liminf_llist_subset_Sup_llist Red_I_of_Red_F_subset Red_I_of_subset Red_in_Sup
double_diff order_refl subset_antisym)
end
end