Theory Xor

theory Xor imports 
  "HOL-Algebra.Complete_Lattice" 
  "CryptHOL.Misc_CryptHOL" 
begin

unbundle no lattice_syntax

context bounded_lattice begin

lemma top_join [simp]: "x  carrier L    x = "
  using eq_is_equal top_join by auto

lemma join_top [simp]: "x  carrier L  x   = "
  using le_iff_meet by blast

lemma bot_join [simp]: "x  carrier L    x = x"
  using le_iff_meet by blast

lemma join_bot [simp]: "x  carrier L  x   = x"
  by (metis bot_join join_comm)

lemma bot_meet [simp]: "x  carrier L    x = "
  using bottom_meet by auto

lemma meet_bot [simp]: "x  carrier L  x   = "
  by (metis bot_meet meet_comm)

lemma top_meet [simp]: "x  carrier L    x = x"
  by (metis le_iff_join meet_comm top_closed top_higher)

lemma meet_top [simp]: "x  carrier L  x   = x"
  by (metis meet_comm top_meet)

lemma join_idem [simp]: "x  carrier L  x  x = x"
  using le_iff_meet by blast

lemma meet_idem [simp]: "x  carrier L  x  x = x"
  using le_iff_join le_refl by presburger

lemma meet_leftcomm: "x  (y  z) = y  (x  z)" if "x  carrier L" "y  carrier L" "z  carrier L"
  by (metis meet_assoc meet_comm that)

lemma join_leftcomm: "x  (y  z) = y  (x  z)" if "x  carrier L" "y  carrier L" "z  carrier L"
  by (metis join_assoc join_comm that)

lemmas meet_ac = meet_assoc meet_comm meet_leftcomm
lemmas join_ac = join_assoc join_comm join_leftcomm

end

record 'a boolean_algebra = "'a gorder" +
  compl :: "'a  'a" (-ı› 1000)

definition xor :: "('a, 'b) boolean_algebra_scheme  'a  'a  'a" (infixr ı› 100) where
  "x  y = (x  y)  (- (x  y))" for L (structure)

locale boolean_algebra = bounded_lattice L
  for L (structure) +
  assumes compl_closed [intro, simp]: "x  carrier L  - x  carrier L"
    and meet_compl_bot [simp]: "x  carrier L  - x  x = "
    and join_compl_top [simp]: "x  carrier L  - x  x = "
    and join_meet_distrib1: " x  carrier L; y  carrier L; z  carrier L   x  (y  z) = (x  y)  (x  z)"
begin

lemma join_meet_distrib2: "(y  z)  x = (y  x)  (z  x)"
  if "x  carrier L" "y  carrier L" "z  carrier L"
  by (simp add: join_comm join_meet_distrib1 that)

lemma meet_join_distrib1: "x  (y  z) = (x  y)  (x  z)"
  if [simp]: "x  carrier L" "y  carrier L" "z  carrier L"
proof -
  have "x  (y  z) = (x  (x  z))  (y  z)"
    using join_left le_iff_join by auto
  also have " = x  (z  (x  y))"
    by (simp add: join_comm join_meet_distrib1 meet_assoc)
  also have " = ((x  y)  x)  ((x  y)  z)"
    by (metis join_comm le_iff_meet meet_closed meet_left that(1) that(2))
  also have " = (x  y)  (x  z)"
    by (simp add: join_meet_distrib1)
  finally show ?thesis .
qed

lemma meet_join_distrib2: "(y  z)  x = (y  x)  (z  x)"
  if [simp]: "x  carrier L" "y  carrier L" "z  carrier L"
  by (simp add: meet_comm meet_join_distrib1)

lemmas join_meet_distrib = join_meet_distrib1 join_meet_distrib2

lemmas meet_join_distrib = meet_join_distrib1 meet_join_distrib2

lemmas distrib = join_meet_distrib meet_join_distrib

lemma meet_compl2_bot [simp]: "x  carrier L  x  - x = "
  by (metis meet_comm meet_compl_bot)

lemma join_compl2_top [simp]: "x  carrier L  x  - x = "
  by (metis join_comm join_compl_top)

lemma compl_unique:
  assumes "x  y = "
    and "x  y = "
    and [simp]: "x  carrier L" "y  carrier L"
  shows "- x = y"
proof -
  have "(x  - x)  (- x  y) = (x  y)  (- x  y)"
    using inf_compl_bot assms(1) by simp
  then have "(- x  x)  (- x  y) = (y  x)  (y  - x)"
    by (simp add: meet_comm)
  then have "- x  (x  y) = y  (x  - x)"
    using assms(3) assms(4) compl_closed meet_join_distrib1 by presburger
  then have "- x   = y  "
    by (simp add: assms(2))
  then show "- x = y"
    using le_iff_join top_higher by auto
qed

lemma double_compl [simp]: "- (- x) = x" if [simp]: "x  carrier L"
  by(rule compl_unique)(simp_all)

lemma compl_eq_compl_iff [simp]: "- x = - y  x = y" if "x  carrier L" "y  carrier L"
  by (metis double_compl that that)

lemma compl_bot_eq [simp]: "-  = "
  using le_iff_join le_iff_meet local.compl_unique top_higher by auto

lemma compl_top_eq [simp]: "-  = "
  by (metis bottom_closed compl_bot_eq double_compl)

lemma compl_inf [simp]: "- (x  y) = - x  - y" if [simp]: "x  carrier L" "y  carrier L"
proof (rule compl_unique)
  have "(x  y)  (- x  - y) = (y  (x  - x))  (x  (y  - y))"
    by (smt compl_closed meet_assoc meet_closed meet_comm meet_join_distrib1 that)
  then show "(x  y)  (- x  - y) = "
    by (metis bottom_closed bottom_lower le_iff_join le_iff_meet meet_comm meet_compl2_bot that)
next
  have "(x  y)  (- x  - y) = (- y  (x  - x))  (- x  (y  - y))"
    by (smt compl_closed join_meet_distrib2 join_assoc join_comm local.boolean_algebra_axioms that join_closed)
  then show "(x  y)  (- x  - y) = "
    by (metis compl_closed join_compl2_top join_right le_iff_join le_iff_meet that top_closed)
qed simp_all

lemma compl_sup [simp]: "- (x  y) = - x  - y" if "x  carrier L" "y  carrier L"
  by (metis compl_closed compl_inf double_compl meet_closed that)

lemma compl_mono:
  assumes "x  y"
    and "x  carrier L" "y  carrier L"
  shows "- y  - x"
  by (metis assms(1) assms(2) assms(3) compl_closed join_comm le_iff_join le_iff_meet compl_inf)

lemma compl_le_compl_iff [simp]: "- x  - y  y  x" if "x  carrier L" "y  carrier L"
  using that by (auto dest: compl_mono)

lemma compl_le_swap1:
  assumes "y  - x" "x  carrier L" "y  carrier L"
  shows "x  - y"
  by (metis assms compl_closed compl_le_compl_iff double_compl)

lemma compl_le_swap2:
  assumes "- y  x" "x  carrier L" "y  carrier L"
  shows "- x  y"
  by (metis assms compl_closed compl_le_compl_iff double_compl)

lemma join_compl_top_left1 [simp]: "- x  (x  y) = " if [simp]: "x  carrier L" "y  carrier L"
  by (simp add: join_assoc[symmetric])

lemma join_compl_top_left2 [simp]: "x  (- x  y) = " if [simp]: "x  carrier L" "y  carrier L"
  using join_compl_top_left1[of "- x" y] by simp

lemma meet_compl_bot_left1 [simp]: "- x  (x  y) = " if [simp]: "x  carrier L" "y  carrier L"
  by (simp add: meet_assoc[symmetric])

lemma meet_compl_bot_left2 [simp]: "x  (- x  y) = " if [simp]: "x  carrier L" "y  carrier L"
  using meet_compl_bot_left1[of "- x" y] by simp

lemma meet_compl_bot_right [simp]: "x  (y  - x) = " if [simp]: "x  carrier L" "y  carrier L"
  by (metis meet_compl_bot_left2 meet_comm that)

lemma xor_closed [intro, simp]: " x  carrier L; y  carrier L   x  y  carrier L"
  by(simp add: xor_def)

lemma xor_comm: " x  carrier L; y  carrier L   x  y = y  x"
  by(simp add: xor_def meet_join_distrib join_comm)

lemma xor_assoc: "(x  y)  z = x  (y  z)"
  if [simp]: "x  carrier L" "y  carrier L" "z  carrier L"
  by(simp add: xor_def)(simp add: meet_join_distrib meet_ac join_ac)

lemma xor_left_comm: "x  (y  z) = y  (x  z)" if "x  carrier L" "y  carrier L" "z  carrier L"
  using that xor_assoc xor_comm by auto

lemma [simp]:
  assumes "x  carrier L"
  shows xor_bot: "x   = x"
  and bot_xor: "  x = x"
  and xor_top: "x   = - x"
  and top_xor: "  x = - x"
  by(simp_all add: xor_def assms)

lemma xor_inverse [simp]: "x  x = " if "x  carrier L"
  by(simp add: xor_def that)

lemma xor_left_inverse [simp]: "x  x  y = y" if "x  carrier L" "y  carrier L"
  using that xor_assoc by fastforce

lemmas xor_ac = xor_assoc xor_comm xor_left_comm

lemma inj_on_xor: "inj_on ((⊕) x) (carrier L)" if "x  carrier L"
  by(rule inj_onI)(metis that xor_left_inverse)

lemma surj_xor: "(⊕) x ` carrier L = carrier L" if [simp]: "x  carrier L"
proof(rule Set.set_eqI, rule iffI)
  fix y
  assume [simp]: "y  carrier L"
  have "x  y  carrier L" by(simp)
  moreover have "y = x  (x  y)" by simp
  ultimately show "y  (⊕) x ` carrier L" by(rule rev_image_eqI)
qed auto

lemma one_time_pad: "map_spmf ((⊕) x) (spmf_of_set (carrier L)) = spmf_of_set (carrier L)"
  if "x  carrier L"
  apply(subst map_spmf_of_set_inj_on)
   apply(rule inj_on_xor[OF that])
  by(simp add: surj_xor that)

end

end