Theory ShadowRootClass
section ‹The Shadow DOM Data Model›
theory ShadowRootClass
imports
Core_DOM.ShadowRootPointer
Core_DOM.DocumentClass
begin
subsection ‹ShadowRoot›
datatype shadow_root_mode = Open | Closed
record ('node_ptr, 'element_ptr, 'character_data_ptr) RShadowRoot = RObject +
nothing :: unit
mode :: shadow_root_mode
child_nodes :: "('node_ptr, 'element_ptr, 'character_data_ptr) node_ptr list"
type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'ShadowRoot) ShadowRoot
= "('node_ptr, 'element_ptr, 'character_data_ptr, 'ShadowRoot option) RShadowRoot_scheme"
register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'ShadowRoot) ShadowRoot"
type_synonym ('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object, 'Node,
'Element, 'CharacterData, 'Document,
'ShadowRoot) Object
= "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, ('node_ptr, 'element_ptr,
'character_data_ptr, 'ShadowRoot option)
RShadowRoot_ext + 'Object, 'Node, 'Element, 'CharacterData, 'Document) Object"
register_default_tvars "('node_ptr, 'element_ptr, 'character_data_ptr, 'shadow_root_ptr, 'Object,
'Node, 'Element, 'CharacterData,
'Document, 'ShadowRoot) Object"
type_synonym ('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr,
'shadow_root_ptr, 'Object, 'Node,
'Element, 'CharacterData, 'Document, 'ShadowRoot) heap
= "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr, 'shadow_root_ptr,
('node_ptr, 'element_ptr,
'character_data_ptr, 'ShadowRoot option) RShadowRoot_ext + 'Object, 'Node, 'Element,
'CharacterData, 'Document) heap"
register_default_tvars "('object_ptr, 'node_ptr, 'element_ptr, 'character_data_ptr, 'document_ptr,
'shadow_root_ptr, 'Object,
'Node, 'Element, 'CharacterData, 'Document, 'ShadowRoot) heap"
type_synonym "heap⇩f⇩i⇩n⇩a⇩l" = "(unit, unit, unit, unit, unit, unit, unit, unit, unit, unit, unit, unit) heap"
definition shadow_root_ptr_kinds :: "(_) heap ⇒ (_) shadow_root_ptr fset"
where
"shadow_root_ptr_kinds heap =
the |`| (cast |`| (ffilter is_shadow_root_ptr_kind (object_ptr_kinds heap)))"
lemma shadow_root_ptr_kinds_simp [simp]:
"shadow_root_ptr_kinds (Heap (fmupd (cast shadow_root_ptr) shadow_root (the_heap h))) =
{|shadow_root_ptr|} |∪| shadow_root_ptr_kinds h"
by (auto simp add: shadow_root_ptr_kinds_def)
definition shadow_root_ptrs :: "(_) heap ⇒ (_) shadow_root_ptr fset"
where
"shadow_root_ptrs heap = ffilter is_shadow_root_ptr (shadow_root_ptr_kinds heap)"
definition cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t :: "(_) Object ⇒ (_) ShadowRoot option"
where
"cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t obj = (case RObject.more obj of
Inr (Inr (Inl shadow_root)) ⇒ Some (RObject.extend (RObject.truncate obj) shadow_root)
| _ ⇒ None)"
adhoc_overloading cast cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t
definition cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t:: "(_) ShadowRoot ⇒ (_) Object"
where
"cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t shadow_root =
(RObject.extend (RObject.truncate shadow_root) (Inr (Inr (Inl (RObject.more shadow_root)))))"
adhoc_overloading cast cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t
definition is_shadow_root_kind :: "(_) Object ⇒ bool"
where
"is_shadow_root_kind ptr ⟷ cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr ≠ None"
lemma shadow_root_ptr_kinds_heap_upd [simp]:
"shadow_root_ptr_kinds (Heap (fmupd (cast shadow_root_ptr) shadow_root (the_heap h))) =
{|shadow_root_ptr|} |∪| shadow_root_ptr_kinds h"
by (auto simp add: shadow_root_ptr_kinds_def)
lemma shadow_root_ptr_kinds_commutes [simp]:
"cast shadow_root_ptr |∈| object_ptr_kinds h ⟷ shadow_root_ptr |∈| shadow_root_ptr_kinds h"
proof (rule iffI)
show "cast shadow_root_ptr |∈| object_ptr_kinds h ⟹ shadow_root_ptr |∈| shadow_root_ptr_kinds h"
by (metis (no_types, opaque_lifting) finsertI1 finsert_absorb funion_finsert_left
funion_finsert_right put⇩O⇩b⇩j⇩e⇩c⇩t_def put⇩O⇩b⇩j⇩e⇩c⇩t_put_ptrs shadow_root_ptr_kinds_def
shadow_root_ptr_kinds_heap_upd sup_bot.right_neutral)
next
show "shadow_root_ptr |∈| shadow_root_ptr_kinds h ⟹ cast shadow_root_ptr |∈| object_ptr_kinds h"
by (auto simp add: object_ptr_kinds_def shadow_root_ptr_kinds_def)
qed
definition get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t :: "(_) shadow_root_ptr ⇒ (_) heap ⇒ (_) ShadowRoot option"
where
"get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h = Option.bind (get (cast shadow_root_ptr) h) cast"
adhoc_overloading get get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t
locale l_type_wf_def⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t
begin
definition a_type_wf :: "(_) heap ⇒ bool"
where
"a_type_wf h = (DocumentClass.type_wf h ∧ (∀shadow_root_ptr ∈ fset (shadow_root_ptr_kinds h).
get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h ≠ None))"
end
global_interpretation l_type_wf_def⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t defines type_wf = a_type_wf .
lemmas type_wf_defs = a_type_wf_def
locale l_type_wf⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t = l_type_wf type_wf for type_wf :: "((_) heap ⇒ bool)" +
assumes type_wf⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t: "type_wf h ⟹ ShadowRootClass.type_wf h"
sublocale l_type_wf⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ⊆ l_type_wf⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t
apply(unfold_locales)
by (metis (full_types) ShadowRootClass.type_wf_def a_type_wf_def l_type_wf⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_axioms
l_type_wf⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma type_wf_implies_previous: "type_wf h ⟹ DocumentClass.type_wf h"
by(simp add: type_wf_defs)
locale l_get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_lemmas = l_type_wf⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t
begin
sublocale l_get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t_lemmas by unfold_locales
lemma get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_type_wf:
assumes "type_wf h"
shows "shadow_root_ptr |∈| shadow_root_ptr_kinds h ⟷ get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h ≠ None"
using l_type_wf⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_axioms assms
apply(simp add: type_wf_defs get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def l_type_wf⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
by (metis is_none_bind is_none_simps(1) is_none_simps(2) local.get⇩O⇩b⇩j⇩e⇩c⇩t_type_wf
shadow_root_ptr_kinds_commutes)
end
global_interpretation l_get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_lemmas type_wf by unfold_locales
definition put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t :: "(_) shadow_root_ptr ⇒ (_) ShadowRoot ⇒ (_) heap ⇒ (_) heap"
where
"put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr shadow_root = put (cast shadow_root_ptr) (cast shadow_root)"
adhoc_overloading put put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t
lemma put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_ptr_in_heap:
assumes "put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr shadow_root h = h'"
shows "shadow_root_ptr |∈| shadow_root_ptr_kinds h'"
using assms
unfolding put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def
by (metis shadow_root_ptr_kinds_commutes put⇩O⇩b⇩j⇩e⇩c⇩t_ptr_in_heap)
lemma put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_put_ptrs:
assumes "put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr shadow_root h = h'"
shows "object_ptr_kinds h' = object_ptr_kinds h |∪| {|cast shadow_root_ptr|}"
using assms
by (simp add: put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩O⇩b⇩j⇩e⇩c⇩t_put_ptrs)
lemma cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t_inject [simp]: "cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t x = cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t y ⟷ x = y"
apply(simp add: cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t_def RObject.extend_def)
by (metis (full_types) RObject.surjective old.unit.exhaust)
lemma cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_none [simp]:
"cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t obj = None ⟷ ¬ (∃shadow_root. cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t shadow_root = obj)"
apply(auto simp add: cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t_def RObject.extend_def
split: sum.splits)[1]
by (metis (full_types) RObject.select_convs(2) RObject.surjective old.unit.exhaust)
lemma cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_some [simp]:
"cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t obj = Some shadow_root ⟷ cast shadow_root = obj"
by(auto simp add: cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t_def RObject.extend_def split: sum.splits)
lemma cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_inv [simp]: "cast⇩O⇩b⇩j⇩e⇩c⇩t⇩2⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t (cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t shadow_root) = Some shadow_root"
by simp
lemma cast_shadow_root_not_node [simp]:
"cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t shadow_root ≠ cast⇩N⇩o⇩d⇩e⇩2⇩O⇩b⇩j⇩e⇩c⇩t node"
"cast⇩N⇩o⇩d⇩e⇩2⇩O⇩b⇩j⇩e⇩c⇩t node ≠ cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t shadow_root"
by(auto simp add: cast⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t⇩2⇩O⇩b⇩j⇩e⇩c⇩t_def cast⇩N⇩o⇩d⇩e⇩2⇩O⇩b⇩j⇩e⇩c⇩t_def RObject.extend_def)
lemma get_shadow_root_ptr_simp1 [simp]:
"get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr shadow_root h) = Some shadow_root"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma get_shadow_root_ptr_simp2 [simp]:
"shadow_root_ptr ≠ shadow_root_ptr'
⟹ get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr' shadow_root h) =
get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma get_shadow_root_ptr_simp3 [simp]:
"get⇩E⇩l⇩e⇩m⇩e⇩n⇩t element_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr f h) = get⇩E⇩l⇩e⇩m⇩e⇩n⇩t element_ptr h"
by(auto simp add: get⇩E⇩l⇩e⇩m⇩e⇩n⇩t_def get⇩N⇩o⇩d⇩e_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma get_shadow_root_ptr_simp4 [simp]:
"get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr (put⇩E⇩l⇩e⇩m⇩e⇩n⇩t element_ptr f h) = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩E⇩l⇩e⇩m⇩e⇩n⇩t_def put⇩N⇩o⇩d⇩e_def)
lemma get_shadow_root_ptr_simp5 [simp]:
"get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a character_data_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr f h) = get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a character_data_ptr h"
by(auto simp add: get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a_def get⇩N⇩o⇩d⇩e_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma get_shadow_root_ptr_simp6 [simp]:
"get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr (put⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a character_data_ptr f h) = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a_def put⇩N⇩o⇩d⇩e_def)
lemma get_shadow_root_ptr_simp7 [simp]:
"get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t document_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr f h) = get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t document_ptr h"
by(auto simp add: get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t_def get⇩N⇩o⇩d⇩e_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma get_shadow_root_ptr_simp8 [simp]:
"get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr (put⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t document_ptr f h) = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t_def put⇩N⇩o⇩d⇩e_def)
lemma new⇩E⇩l⇩e⇩m⇩e⇩n⇩t_get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t [simp]:
assumes "new⇩E⇩l⇩e⇩m⇩e⇩n⇩t h = (new_element_ptr, h')"
shows "get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h'"
using assms
by(auto simp add: new⇩E⇩l⇩e⇩m⇩e⇩n⇩t_def Let_def)
lemma new⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a_get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t [simp]:
assumes "new⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a h = (new_character_data_ptr, h')"
shows "get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h'"
using assms
by(auto simp add: new⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a_def Let_def)
lemma new⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t_get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t [simp]:
assumes "new⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t h = (new_document_ptr, h')"
shows "get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h'"
using assms
by(auto simp add: new⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t_def Let_def)
abbreviation "create_shadow_root_obj mode_arg child_nodes_arg
≡ ⦇ RObject.nothing = (), RShadowRoot.nothing = (), mode = mode_arg,
RShadowRoot.child_nodes = child_nodes_arg, … = None ⦈"
definition new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t :: "(_)heap ⇒ ((_) shadow_root_ptr × (_) heap)"
where
"new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (let new_shadow_root_ptr =
shadow_root_ptr.Ref (Suc (fMax (shadow_root_ptr.the_ref |`| (shadow_root_ptrs h)))) in
(new_shadow_root_ptr, put new_shadow_root_ptr (create_shadow_root_obj Open []) h))"
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_ptr_in_heap:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
shows "new_shadow_root_ptr |∈| shadow_root_ptr_kinds h'"
using assms
unfolding new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def Let_def
using put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_ptr_in_heap by blast
lemma new_shadow_root_ptr_new:
"shadow_root_ptr.Ref (Suc (fMax (finsert 0 (shadow_root_ptr.the_ref |`| shadow_root_ptrs h)))) |∉|
shadow_root_ptrs h"
by (metis Suc_n_not_le_n shadow_root_ptr.sel(1) fMax_ge fimage_finsert finsertI1 finsertI2 set_finsert)
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_ptr_not_in_heap:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
shows "new_shadow_root_ptr |∉| shadow_root_ptr_kinds h"
using assms
unfolding new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def
by (metis Pair_inject shadow_root_ptrs_def fMax_finsert fempty_iff ffmember_filter
fimage_is_fempty is_shadow_root_ptr_ref max_0L new_shadow_root_ptr_new)
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_new_ptr:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
shows "object_ptr_kinds h' = object_ptr_kinds h |∪| {|cast new_shadow_root_ptr|}"
using assms
by (metis Pair_inject new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_put_ptrs)
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_is_shadow_root_ptr:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
shows "is_shadow_root_ptr new_shadow_root_ptr"
using assms
by(auto simp add: new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def Let_def)
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_get⇩O⇩b⇩j⇩e⇩c⇩t [simp]:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
assumes "ptr ≠ cast new_shadow_root_ptr"
shows "get⇩O⇩b⇩j⇩e⇩c⇩t ptr h = get⇩O⇩b⇩j⇩e⇩c⇩t ptr h'"
using assms
by(auto simp add: new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def Let_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_get⇩N⇩o⇩d⇩e [simp]:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
shows "get⇩N⇩o⇩d⇩e ptr h = get⇩N⇩o⇩d⇩e ptr h'"
using assms
apply(simp add: new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def Let_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
by(auto simp add: get⇩N⇩o⇩d⇩e_def)
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_get⇩E⇩l⇩e⇩m⇩e⇩n⇩t [simp]:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
shows "get⇩E⇩l⇩e⇩m⇩e⇩n⇩t ptr h = get⇩E⇩l⇩e⇩m⇩e⇩n⇩t ptr h'"
using assms
by(auto simp add: new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def Let_def)
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a [simp]:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
shows "get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a ptr h = get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a ptr h'"
using assms
by(auto simp add: new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def Let_def)
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t [simp]:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
shows "get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t ptr h = get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t ptr h'"
using assms
apply(simp add: new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def Let_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
by(auto simp add: get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t_def)
lemma new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t [simp]:
assumes "new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t h = (new_shadow_root_ptr, h')"
assumes "ptr ≠ new_shadow_root_ptr"
shows "get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h'"
using assms
by(auto simp add: new⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def Let_def)
locale l_known_ptr⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t
begin
definition a_known_ptr :: "(_) object_ptr ⇒ bool"
where
"a_known_ptr ptr = (known_ptr ptr ∨ is_shadow_root_ptr ptr)"
lemma known_ptr_not_shadow_root_ptr: "a_known_ptr ptr ⟹ ¬is_shadow_root_ptr ptr ⟹ known_ptr ptr"
by(simp add: a_known_ptr_def)
lemma known_ptr_new_shadow_root_ptr: "a_known_ptr ptr ⟹ ¬known_ptr ptr ⟹ is_shadow_root_ptr ptr"
using l_known_ptr⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t.known_ptr_not_shadow_root_ptr by blast
end
global_interpretation l_known_ptr⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t defines known_ptr = a_known_ptr .
lemmas known_ptr_defs = a_known_ptr_def
locale l_known_ptrs⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t = l_known_ptr known_ptr for known_ptr :: "(_) object_ptr ⇒ bool"
begin
definition a_known_ptrs :: "(_) heap ⇒ bool"
where
"a_known_ptrs h = (∀ptr ∈ fset (object_ptr_kinds h). known_ptr ptr)"
lemma known_ptrs_known_ptr: "a_known_ptrs h ⟹ ptr |∈| object_ptr_kinds h ⟹ known_ptr ptr"
by (simp add: a_known_ptrs_def)
lemma known_ptrs_preserved:
"object_ptr_kinds h = object_ptr_kinds h' ⟹ a_known_ptrs h = a_known_ptrs h'"
by(auto simp add: a_known_ptrs_def)
lemma known_ptrs_subset:
"object_ptr_kinds h' |⊆| object_ptr_kinds h ⟹ a_known_ptrs h ⟹ a_known_ptrs h'"
by (simp add: less_eq_fset.rep_eq local.a_known_ptrs_def subsetD)
lemma known_ptrs_new_ptr:
"object_ptr_kinds h' = object_ptr_kinds h |∪| {|new_ptr|} ⟹ known_ptr new_ptr ⟹
a_known_ptrs h ⟹ a_known_ptrs h'"
by(simp add: a_known_ptrs_def)
end
global_interpretation l_known_ptrs⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t known_ptr defines known_ptrs = a_known_ptrs .
lemmas known_ptrs_defs = a_known_ptrs_def
lemma known_ptrs_is_l_known_ptrs [instances]: "l_known_ptrs known_ptr known_ptrs"
using known_ptrs_known_ptr known_ptrs_preserved l_known_ptrs_def known_ptrs_subset
known_ptrs_new_ptr
by blast
lemma shadow_root_get_put_1 [simp]:
"get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr shadow_root h) = Some shadow_root"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma shadow_root_different_get_put [simp]:
"shadow_root_ptr ≠ shadow_root_ptr' ⟹
get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr' shadow_root h) = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma shadow_root_get_put_2 [simp]:
"get⇩E⇩l⇩e⇩m⇩e⇩n⇩t element_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr f h) = get⇩E⇩l⇩e⇩m⇩e⇩n⇩t element_ptr h"
by(auto simp add: get⇩E⇩l⇩e⇩m⇩e⇩n⇩t_def get⇩N⇩o⇩d⇩e_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma shadow_root_get_put_3 [simp]:
"get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t element_ptr (put⇩E⇩l⇩e⇩m⇩e⇩n⇩t shadow_root_ptr f h) = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t element_ptr h"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩E⇩l⇩e⇩m⇩e⇩n⇩t_def put⇩N⇩o⇩d⇩e_def)
lemma shadow_root_get_put_4 [simp]:
"get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a character_data_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr f h) = get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a character_data_ptr h"
by(auto simp add: get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a_def get⇩N⇩o⇩d⇩e_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma shadow_root_get_put_5 [simp]:
"get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t character_data_ptr (put⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a shadow_root_ptr f h) = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t character_data_ptr h"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a_def put⇩N⇩o⇩d⇩e_def)
lemma shadow_root_get_put_6 [simp]:
"get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t document_ptr (put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr f h) = get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t document_ptr h"
by(auto simp add: get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t_def get⇩N⇩o⇩d⇩e_def put⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma shadow_root_get_put_7 [simp]:
"get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t document_ptr (put⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t shadow_root_ptr f h) = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t document_ptr h"
by(auto simp add: get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def put⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t_def put⇩N⇩o⇩d⇩e_def)
lemma known_ptrs_implies: "DocumentClass.known_ptrs h ⟹ ShadowRootClass.known_ptrs h"
by(auto simp add: DocumentClass.known_ptrs_defs DocumentClass.known_ptr_defs
ShadowRootClass.known_ptrs_defs ShadowRootClass.known_ptr_defs)
definition delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t :: "(_) shadow_root_ptr ⇒ (_) heap ⇒ (_) heap option" where
"delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr = delete⇩O⇩b⇩j⇩e⇩c⇩t (cast shadow_root_ptr)"
lemma delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_pointer_removed:
assumes "delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h = Some h'"
shows "ptr |∉| shadow_root_ptr_kinds h'"
using assms
by(auto simp add: delete⇩O⇩b⇩j⇩e⇩c⇩t_pointer_removed delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def shadow_root_ptr_kinds_def
split: if_splits)
lemma delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_pointer_ptr_in_heap:
assumes "delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h = Some h'"
shows "ptr |∈| shadow_root_ptr_kinds h"
using assms
apply(auto simp add: delete⇩O⇩b⇩j⇩e⇩c⇩t_pointer_ptr_in_heap delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def split: if_splits)[1]
using delete⇩O⇩b⇩j⇩e⇩c⇩t_pointer_ptr_in_heap
by fastforce
lemma delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_ok:
assumes "ptr |∈| shadow_root_ptr_kinds h"
shows "delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t ptr h ≠ None"
using assms
by (simp add: delete⇩O⇩b⇩j⇩e⇩c⇩t_ok delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def)
lemma shadow_root_delete_get_1 [simp]:
"delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h = Some h' ⟹ get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h' = None"
by(auto simp add: delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def delete⇩O⇩b⇩j⇩e⇩c⇩t_def get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def get⇩O⇩b⇩j⇩e⇩c⇩t_def split: if_splits)
lemma shadow_root_different_delete_get [simp]:
"shadow_root_ptr ≠ shadow_root_ptr' ⟹ delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr' h = Some h' ⟹
get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h' = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h"
by(auto simp add: delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def delete⇩O⇩b⇩j⇩e⇩c⇩t_def get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def get⇩O⇩b⇩j⇩e⇩c⇩t_def split: if_splits)
lemma shadow_root_delete_get_2 [simp]:
"delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h = Some h' ⟹ object_ptr ≠ cast shadow_root_ptr ⟹
get⇩O⇩b⇩j⇩e⇩c⇩t object_ptr h' = get⇩O⇩b⇩j⇩e⇩c⇩t object_ptr h"
by(auto simp add: delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def delete⇩O⇩b⇩j⇩e⇩c⇩t_def get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def get⇩O⇩b⇩j⇩e⇩c⇩t_def split: if_splits)
lemma shadow_root_delete_get_3 [simp]:
"delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h = Some h' ⟹ get⇩N⇩o⇩d⇩e node_ptr h' = get⇩N⇩o⇩d⇩e node_ptr h"
by(auto simp add: get⇩N⇩o⇩d⇩e_def)
lemma shadow_root_delete_get_4 [simp]:
"delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h = Some h' ⟹ get⇩E⇩l⇩e⇩m⇩e⇩n⇩t element_ptr h' = get⇩E⇩l⇩e⇩m⇩e⇩n⇩t element_ptr h"
by(simp add: get⇩E⇩l⇩e⇩m⇩e⇩n⇩t_def)
lemma shadow_root_delete_get_5 [simp]:
"delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h = Some h' ⟹
get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a character_data_ptr h' = get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a character_data_ptr h"
by(simp add: get⇩C⇩h⇩a⇩r⇩a⇩c⇩t⇩e⇩r⇩D⇩a⇩t⇩a_def)
lemma shadow_root_delete_get_6 [simp]:
"delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h = Some h' ⟹ get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t document_ptr h' = get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t document_ptr h"
by(simp add: get⇩D⇩o⇩c⇩u⇩m⇩e⇩n⇩t_def)
lemma shadow_root_delete_get_7 [simp]:
"delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr h = Some h' ⟹ shadow_root_ptr' ≠ shadow_root_ptr ⟹
get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr' h' = get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t shadow_root_ptr' h"
by(auto simp add: delete⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def delete⇩O⇩b⇩j⇩e⇩c⇩t_def get⇩S⇩h⇩a⇩d⇩o⇩w⇩R⇩o⇩o⇩t_def get⇩O⇩b⇩j⇩e⇩c⇩t_def split: if_splits)
end