Theory Separation_Logic_Imperative_HOL.From_List_GA
section ‹Generic Algorithm to Generate Sets from Lists›
theory From_List_GA
imports Imp_Set_Spec Imp_List_Spec Hash_Set_Impl Array_Set_Impl
begin
term fold
primrec from_list_ga_aux where
"from_list_ga_aux ins [] s = return s"
| "from_list_ga_aux ins (x#l) s
= do { s ← ins x s; from_list_ga_aux ins l s }"
lemma from_list_ga_aux_rule:
assumes "imp_set_ins is_set ins"
shows
"< is_set s p > from_list_ga_aux ins l p <λr. is_set (set l ∪ s) r >⇩t"
proof -
interpret imp_set_ins is_set ins by fact
show ?thesis
proof (induction l arbitrary: s p)
case Nil thus ?case by sep_auto
next
case (Cons x l)
show ?case by (sep_auto heap: Cons.IH)
qed
qed
definition "from_list_ga e i l = do { s←e; from_list_ga_aux i l s}"
lemma from_list_ga_rule:
fixes empty
assumes "imp_set_empty is_set empty"
assumes I: "imp_set_ins is_set ins"
shows "<emp> from_list_ga empty ins l <λr. is_set (set l) r>⇩t"
proof -
interpret imp_set_empty is_set empty by fact
note [sep_heap_rules] = from_list_ga_aux_rule[OF I]
show ?thesis unfolding from_list_ga_def by sep_auto
qed
definition "hs_from_list ≡ from_list_ga hs_new hs_ins"
lemmas hs_from_list_rule[sep_heap_rules]
= from_list_ga_rule[OF hs_new_impl hs_ins_impl, folded hs_from_list_def]
definition "ias_from_list ≡ from_list_ga ias_new ias_ins"
lemmas ias_from_list_rule[sep_heap_rules]
= from_list_ga_rule[OF ias_empty_impl ias_ins_impl,
folded ias_from_list_def]
end