Theory Refine_Imperative_HOL.Sepref_Id_Op
section ‹Operation Identification Phase›
theory Sepref_Id_Op
imports
Main
Automatic_Refinement.Refine_Lib
Automatic_Refinement.Autoref_Tagging
"Lib/Named_Theorems_Rev"
begin
text ‹
The operation identification phase is adapted from the Autoref tool.
The basic idea is to have a type system, which works on so called
interface types (also called conceptual types). Each conceptual type
denotes an abstract data type, e.g., set, map, priority queue.
Each abstract operation, which must be a constant applied to its arguments,
is assigned a conceptual type. Additionally, there is a set of
{\emph pattern rewrite rules},
which are applied to subterms before type inference takes place, and
which may be backtracked over.
This way, encodings of abstract operations in Isabelle/HOL, like
@{term [source] "λ_. None"} for the empty map,
or @{term [source] "fun_upd m k (Some v)"} for map update, can be rewritten
to abstract operations, and get properly typed.
›
subsection "Proper Protection of Term"
text ‹ The following constants are meant to encode abstraction and
application as proper HOL-constants, and thus avoid strange effects with
HOL's higher-order unification heuristics and automatic
beta and eta-contraction.
The first step of operation identification is to protect the term
by replacing all function applications and abstractions be
the constants defined below.
›
definition [simp]: "PROTECT2 x (y::prop) ≡ x"
consts DUMMY :: "prop"
abbreviation PROTECT2_syn (‹'(#_#')›) where "PROTECT2_syn t ≡ PROTECT2 t DUMMY"
abbreviation (input)ABS2 :: "('a⇒'b)⇒'a⇒'b" (binder ‹λ⇩2› 10)
where "ABS2 f ≡ (λx. PROTECT2 (f x) DUMMY)"
lemma beta: "(λ⇩2x. f x)$x ≡ f x" by simp
text ‹
Another version of @{const "APP"}. Treated like @{const APP} by our tool.
Required to avoid infinite pattern rewriting in some cases, e.g., map-lookup.
›
definition APP' (infixl ‹$''› 900) where [simp, autoref_tag_defs]: "f$'a ≡ f a"
text ‹
Sometimes, whole terms should be protected from being processed by our tool.
For example, our tool should not look into numerals. For this reason,
the ‹PR_CONST› tag indicates terms that our tool shall handle as
atomic constants, an never look into them.
The special form ‹UNPROTECT› can be used inside pattern rewrite rules.
It has the effect to revert the protection from its argument, and then wrap
it into a ‹PR_CONST›.
›
definition [simp, autoref_tag_defs]: "PR_CONST x ≡ x"
definition [simp, autoref_tag_defs]: "UNPROTECT x ≡ x"
subsection ‹Operation Identification›
text ‹ Indicator predicate for conceptual typing of a constant ›
definition intf_type :: "'a ⇒ 'b itself ⇒ bool" (infix ‹::⇩i› 10) where
[simp]: "c::⇩iI ≡ True"
lemma itypeI: "c::⇩iI" by simp
lemma itypeI': "intf_type c TYPE('T)" by (rule itypeI)
lemma itype_self: "(c::'a) ::⇩i TYPE('a)" by simp
definition CTYPE_ANNOT :: "'b ⇒ 'a itself ⇒ 'b" (infix ‹:::⇩i› 10) where
[simp]: "c:::⇩iI ≡ c"
text ‹ Wrapper predicate for an conceptual type inference ›
definition ID :: "'a ⇒ 'a ⇒ 'c itself ⇒ bool"
where [simp]: "ID t t' T ≡ t=t'"
subsubsection ‹Conceptual Typing Rules›
lemma ID_unfold_vars: "ID x y T ⟹ x≡y" by simp
lemma ID_PR_CONST_trigger: "ID (PR_CONST x) y T ⟹ ID (PR_CONST x) y T" .
lemma pat_rule:
"⟦ p≡p'; ID p' t' T ⟧ ⟹ ID p t' T" by simp
lemma app_rule:
"⟦ ID f f' TYPE('a⇒'b); ID x x' TYPE('a)⟧ ⟹ ID (f$x) (f'$x') TYPE('b)"
by simp
lemma app'_rule:
"⟦ ID f f' TYPE('a⇒'b); ID x x' TYPE('a)⟧ ⟹ ID (f$'x) (f'$x') TYPE('b)"
by simp
lemma abs_rule:
"⟦ ⋀x x'. ID x x' TYPE('a) ⟹ ID (t x) (t' x x') TYPE('b) ⟧ ⟹
ID (λ⇩2x. t x) (λ⇩2x'. t' x' x') TYPE('a⇒'b)"
by simp
lemma id_rule: "c::⇩iI ⟹ ID c c I" by simp
lemma annot_rule: "ID t t' I ⟹ ID (t:::⇩iI) t' I"
by simp
lemma fallback_rule:
"ID (c::'a) c TYPE('c)"
by simp
lemma unprotect_rl1: "ID (PR_CONST x) t T ⟹ ID (UNPROTECT x) t T"
by simp
subsection ‹ ML-Level code ›
ML ‹
infix 0 THEN_ELSE_COMB'
signature ID_OP_TACTICAL = sig
val SOLVE_FWD: tactic' -> tactic'
val DF_SOLVE_FWD: bool -> tactic' -> tactic'
end
structure Id_Op_Tactical :ID_OP_TACTICAL = struct
fun SOLVE_FWD tac i st = SOLVED' (
tac
THEN_ALL_NEW_FWD (SOLVE_FWD tac)) i st
fun DF_SOLVE_FWD dbg tac = let
val stuck_list_ref = Unsynchronized.ref []
fun stuck_tac _ st = if dbg then (
stuck_list_ref := st :: !stuck_list_ref;
Seq.empty
) else Seq.empty
fun rec_tac i st = (
(tac THEN_ALL_NEW_FWD (SOLVED' rec_tac))
ORELSE' stuck_tac
) i st
fun fail_tac _ _ = if dbg then
Seq.of_list (rev (!stuck_list_ref))
else Seq.empty
in
rec_tac ORELSE' fail_tac
end
end
›
named_theorems_rev id_rules "Operation identification rules"
named_theorems_rev pat_rules "Operation pattern rules"
named_theorems_rev def_pat_rules "Definite operation pattern rules (not backtracked over)"
ML ‹
structure Id_Op = struct
fun id_a_conv cnv ct = case Thm.term_of ct of
@{mpat "ID _ _ _"} => Conv.fun_conv (Conv.fun_conv (Conv.arg_conv cnv)) ct
| _ => raise CTERM("id_a_conv",[ct])
fun
protect env (@{mpat "?t:::⇩i?I"}) = let
val t = protect env t
in
@{mk_term env: "?t:::⇩i?I"}
end
| protect _ (t as @{mpat "PR_CONST _"}) = t
| protect env (t1$t2) = let
val t1 = protect env t1
val t2 = protect env t2
in
@{mk_term env: "?t1.0 $ ?t2.0"}
end
| protect env (Abs (x,T,t)) = let
val t = protect (T::env) t
in
@{mk_term env: "λv_x::?'v_T. PROTECT2 ?t DUMMY"}
end
| protect _ t = t
fun protect_conv ctxt = Refine_Util.f_tac_conv ctxt
(protect [])
(fn goal_ctxt =>
simp_tac (put_simpset HOL_basic_ss goal_ctxt addsimps @{thms PROTECT2_def APP_def}) 1)
fun unprotect_conv ctxt
= Simplifier.rewrite (put_simpset HOL_basic_ss ctxt
addsimps @{thms PROTECT2_def APP_def})
fun do_unprotect_tac ctxt =
resolve_tac ctxt @{thms unprotect_rl1} THEN'
CONVERSION (Refine_Util.HOL_concl_conv (fn ctxt => id_a_conv (unprotect_conv ctxt)) ctxt)
val cfg_id_debug =
Attrib.setup_config_bool @{binding id_debug} (K false)
val cfg_id_trace_fallback =
Attrib.setup_config_bool @{binding id_trace_fallback} (K false)
fun dest_id_rl thm = case Thm.concl_of thm of
@{mpat (typs) "Trueprop (?c::⇩iTYPE(?'v_T))"} => (c,T)
| _ => raise THM("dest_id_rl",~1,[thm])
val add_id_rule = snd oo Thm.proof_attributes [Named_Theorems_Rev.add @{named_theorems_rev id_rules}]
datatype id_tac_mode = Init | Step | Normal | Solve
fun id_tac ss ctxt = let
open Id_Op_Tactical
val certT = Thm.ctyp_of ctxt
val cert = Thm.cterm_of ctxt
val thy = Proof_Context.theory_of ctxt
val id_rules = Named_Theorems_Rev.get ctxt @{named_theorems_rev id_rules}
val pat_rules = Named_Theorems_Rev.get ctxt @{named_theorems_rev pat_rules}
val def_pat_rules = Named_Theorems_Rev.get ctxt @{named_theorems_rev def_pat_rules}
val rl_net = Tactic.build_net (
(pat_rules |> map (fn thm => thm RS @{thm pat_rule}))
@ @{thms annot_rule app_rule app'_rule abs_rule}
@ (id_rules |> map (fn thm => thm RS @{thm id_rule}))
)
val def_rl_net = Tactic.build_net (
(def_pat_rules |> map (fn thm => thm RS @{thm pat_rule}))
)
val id_pr_const_rename_tac =
resolve_tac ctxt @{thms ID_PR_CONST_trigger} THEN'
Subgoal.FOCUS (fn { context=ctxt, prems, ... } =>
let
fun is_ID @{mpat "Trueprop (ID _ _ _)"} = true | is_ID _ = false
val prems = filter (Thm.prop_of #> is_ID) prems
val eqs = map (fn thm => thm RS @{thm ID_unfold_vars}) prems
val conv = Conv.rewrs_conv eqs
val conv = fn ctxt => (Conv.top_sweep_conv (K conv) ctxt)
val conv = fn ctxt => Conv.fun2_conv (Conv.arg_conv (conv ctxt))
val conv = Refine_Util.HOL_concl_conv conv ctxt
in CONVERSION conv 1 end
) ctxt THEN'
resolve_tac ctxt @{thms id_rule} THEN'
resolve_tac ctxt id_rules
val ityping = id_rules
|> map dest_id_rl
|> filter (is_Const o #1)
|> map (apfst (#1 o dest_Const))
|> Symtab.make_list
val has_type = Symtab.defined ityping
fun mk_fallback name cT =
case try (Sign.the_const_constraint thy) name of
SOME T => try (Thm.instantiate'
[SOME (certT cT), SOME (certT T)] [SOME (cert (Const (name,cT)))])
@{thm fallback_rule}
| NONE => NONE
fun trace_fallback thm =
Config.get ctxt cfg_id_trace_fallback
andalso let
open Pretty
val p = block [str "ID_OP: Applying fallback rule: ", Thm.pretty_thm ctxt thm]
in
string_of p |> tracing;
false
end
val fallback_tac = CONVERSION Thm.eta_conversion THEN' IF_EXGOAL (fn i => fn st =>
case Logic.concl_of_goal (Thm.prop_of st) i of
@{mpat "Trueprop (ID (mpaq_STRUCT (mpaq_Const ?name ?cT)) _ _)"} => (
if not (has_type name) then
case mk_fallback name cT of
SOME thm => (trace_fallback thm; resolve_tac ctxt [thm] i st)
| NONE => Seq.empty
else Seq.empty
)
| _ => Seq.empty)
val init_tac = CONVERSION (
Refine_Util.HOL_concl_conv (fn ctxt => (id_a_conv (protect_conv ctxt)))
ctxt
)
val step_tac = (FIRST' [
assume_tac ctxt,
eresolve_tac ctxt @{thms id_rule},
resolve_from_net_tac ctxt def_rl_net,
resolve_from_net_tac ctxt rl_net,
id_pr_const_rename_tac,
do_unprotect_tac ctxt,
fallback_tac])
val solve_tac = DF_SOLVE_FWD (Config.get ctxt cfg_id_debug) step_tac
in
case ss of
Init => init_tac
| Step => step_tac
| Normal => init_tac THEN' solve_tac
| Solve => solve_tac
end
end
›
subsection ‹Default Setup›
subsubsection ‹Numerals›
lemma pat_numeral[def_pat_rules]: "numeral$x ≡ UNPROTECT (numeral$x)" by simp
lemma id_nat_const[id_rules]: "(PR_CONST (a::nat)) ::⇩i TYPE(nat)" by simp
lemma id_int_const[id_rules]: "(PR_CONST (a::int)) ::⇩i TYPE(int)" by simp
end