Theory UnboundedLogic

section ‹Unbounded Separation Logic›

theory UnboundedLogic
  imports Main
begin

subsection ‹Assertions and state model›

text ‹We define our assertion language as described in Section 2.3 of the paper~cite"UnboundedSL".›

datatype ('a, 'b, 'c, 'd) assertion =
  Sem "('d  'c)  'a  bool"
  | Mult 'b "('a, 'b, 'c, 'd) assertion"
  | Star "('a, 'b, 'c, 'd) assertion" "('a, 'b, 'c, 'd) assertion"
  | Wand "('a, 'b, 'c, 'd) assertion" "('a, 'b, 'c, 'd) assertion"
  | Or "('a, 'b, 'c, 'd) assertion" "('a, 'b, 'c, 'd) assertion"
  | And "('a, 'b, 'c, 'd) assertion" "('a, 'b, 'c, 'd) assertion"
  | Imp "('a, 'b, 'c, 'd) assertion" "('a, 'b, 'c, 'd) assertion"
  | Exists 'd "('a, 'b, 'c, 'd) assertion"
  | Forall 'd "('a, 'b, 'c, 'd) assertion"
  | Pred
  | Bounded "('a, 'b, 'c, 'd) assertion"
  | Wildcard "('a, 'b, 'c, 'd) assertion"

type_synonym 'a command = "('a × 'a option) set"

locale pre_logic =
    fixes plus :: "'a  'a  'a option" (infixl  63)

begin

definition compatible :: "'a  'a  bool" (infixl ## 60) where
  "a ## b  a  b  None"

definition larger :: "'a  'a  bool" (infixl  55) where
  "a  b  (c. Some a = b  c)"

end

type_synonym ('a, 'b, 'c) interp = "('a  'b)  'c set"

text ‹The following locale captures the state model described in Section 2.2 of the paper~cite"UnboundedSL".›

locale logic = pre_logic +

  fixes mult :: "'b  'a  'a" (infixl  64)

  fixes smult :: "'b  'b  'b"
  fixes sadd :: "'b  'b  'b"
  fixes sinv :: "'b  'b"

  fixes one :: 'b

  fixes valid :: "'a  bool"


  assumes commutative: "a  b = b  a"
      and asso1: "a  b = Some ab  b  c = Some bc  ab  c = a  bc"
      and asso2: "a  b = Some ab  ¬ b ## c  ¬ ab ## c"

      and sinv_inverse: "smult p (sinv p) = one"
      and sone_neutral: "smult one p = p"
      and sadd_comm: "sadd p q = sadd q p"
      and smult_comm: "smult p q = smult q p"
      and smult_distrib: "smult p (sadd q r) = sadd (smult p q) (smult p r)"
      and smult_asso: "smult (smult p q) r = smult p (smult q r)"

      and double_mult: "p  (q  a) = (smult p q)  a"
      and plus_mult: "Some a = b  c  Some (p  a) = (p  b)  (p  c)"
      and distrib_mult: "Some ((sadd p q)  x) = p  x  q  x"
      and one_neutral: "one  a = a"

      and valid_mono: "valid a  a  b  valid b"

begin

text ‹The validity of assertions corresponds to Figure 3 of the paper~cite"UnboundedSL".›

fun sat :: "'a  ('d  'c)  ('d, 'c, 'a) interp  ('a, 'b, 'c, 'd) assertion  bool" (‹_, _, _  _› [51, 65, 68, 66] 50) where
  "σ, s, Δ  Mult p A  (a. σ = p  a  a, s, Δ  A)"
| "σ, s, Δ  Star A B  (a b. Some σ = a  b  a, s, Δ  A  b, s, Δ  B)"
| "σ, s, Δ  Wand A B  (a σ'. a, s, Δ  A  Some σ' = σ  a  σ', s, Δ  B)"

| "σ, s, Δ  Sem b  b s σ"
| "σ, s, Δ  Imp A B  (σ, s, Δ  A  σ, s, Δ  B)"
| "σ, s, Δ  Or A B  (σ, s, Δ  A  σ, s, Δ  B)"
| "σ, s, Δ  And A B  (σ, s, Δ  A  σ, s, Δ  B)"

| "σ, s, Δ  Exists x A  (v. σ, s(x := v), Δ  A)"
| "σ, s, Δ  Forall x A  (v. σ, s(x := v), Δ  A)"

| "σ, s, Δ  Pred  (σ  Δ s)"
| "σ, s, Δ  Bounded A  (valid σ  σ, s, Δ  A)"
| "σ, s, Δ  Wildcard A  (a p. σ = p  a  a, s, Δ  A)"

definition intuitionistic :: "('d  'c)  ('d, 'c, 'a) interp  ('a, 'b, 'c, 'd) assertion  bool" where
  "intuitionistic s Δ A  (a b. a  b  b, s, Δ  A  a, s, Δ  A)"

definition entails :: "('a, 'b, 'c, 'd) assertion  ('d, 'c, 'a) interp  ('a, 'b, 'c, 'd) assertion  bool" (‹_, _  _› [63, 66, 68] 52) where
  "A, Δ  B  (σ s. σ, s, Δ  A  σ, s, Δ  B)"

definition equivalent :: "('a, 'b, 'c, 'd) assertion  ('d, 'c, 'a) interp  ('a, 'b, 'c, 'd) assertion  bool" (‹_, _  _› [63, 66, 68] 52) where
  "A, Δ  B  (A, Δ  B  B, Δ  A)"

definition pure :: "('a, 'b, 'c, 'd) assertion  bool" where
  "pure A  (σ σ' s Δ Δ'. σ, s, Δ  A  σ', s, Δ'  A)"


subsection ‹Useful lemmas›

lemma sat_forall:
  assumes "v. σ, s(x := v), Δ  A"
  shows "σ, s, Δ  Forall x A"
  by (simp add: assms)

lemma intuitionisticI:
  assumes "a b. a  b  b, s, Δ  A  a, s, Δ  A"
  shows "intuitionistic s Δ A"
  by (meson assms intuitionistic_def)

lemma can_divide:
  assumes "p  a = p  b"
  shows "a = b"
  by (metis assms double_mult logic.one_neutral logic_axioms sinv_inverse smult_comm)

lemma unique_inv:
  "a = p  b  b = (sinv p)  a"
  by (metis double_mult logic.can_divide logic_axioms sinv_inverse sone_neutral)

lemma entailsI:
  assumes "σ s. σ, s, Δ  A  σ, s, Δ  B"
  shows "A, Δ  B"
  by (simp add: assms entails_def)

lemma equivalentI:
  assumes "σ s. σ, s, Δ  A  σ, s, Δ  B"
      and "σ s. σ, s, Δ  B  σ, s, Δ  A"
    shows "A, Δ  B"
  by (simp add: assms(1) assms(2) entailsI equivalent_def)

lemma compatible_imp:
  assumes "a ## b"
  shows "(p  a) ## (p  b)"
  by (metis assms compatible_def option.distinct(1) option.exhaust plus_mult)

lemma compatible_iff:
  "a ## b  (p  a) ## (p  b)"
  by (metis compatible_imp unique_inv)

lemma sat_wand:
  assumes "a σ'. a, s, Δ  A  Some σ' = σ  a  σ', s, Δ  B"
  shows "σ, s, Δ  Wand A B"
  using assms by auto

lemma sat_imp:
  assumes "σ, s, Δ  A  σ, s, Δ  B"
  shows "σ, s, Δ  Imp A B"
  using assms by auto

lemma sat_mult:
  assumes "a. σ = p  a  a, s, Δ  A"
  shows "σ, s, Δ  Mult p A"
  by (metis assms logic.sat.simps(1) logic_axioms unique_inv)

lemma larger_same:
  "a  b  p  a  p  b"
proof -
  have "a b p. a  b  p  a  p  b"
    by (meson larger_def plus_mult)
  then show ?thesis
    by (metis unique_inv)
qed

lemma asso3:
  assumes "¬ a ## b"
      and "b  c = Some bc"
    shows "¬ a ## bc"
  by (metis (full_types) assms(1) assms(2) asso2 commutative compatible_def)

lemma compatible_smaller:
  assumes "a  b"
      and "x ## a"
    shows "x ## b"
  by (metis assms(1) assms(2) asso3 larger_def)

lemma compatible_multiples:
  assumes "p  a ## q  b"
  shows "a ## b"
  by (metis (no_types, opaque_lifting) assms commutative compatible_def compatible_iff compatible_smaller distrib_mult larger_def one_neutral)

lemma move_sum:
  assumes "Some a = a1  a2"
      and "Some b = b1  b2"
      and "Some x = a  b"
      and "Some x1 = a1  b1"
      and "Some x2 = a2  b2"
    shows "Some x = x1  x2"
proof -
  obtain ab1 where "Some ab1 = a  b1"
    by (metis assms(2) assms(3) asso3 compatible_def not_Some_eq)
  then have "Some ab1 = x1  a2"
    by (metis assms(1) assms(4) asso1 commutative)
  then show ?thesis
    by (metis Some ab1 = a  b1 assms(2) assms(3) assms(5) asso1)
qed

lemma sum_both_larger:
  assumes "Some x' = a'  b'"
      and "Some x = a  b"
      and "a'  a"
      and "b'  b"
    shows "x'  x"
proof -
  obtain ra rb where "Some a' = a  ra" "Some b' = b  rb"
    using assms(3) assms(4) larger_def by auto
  then obtain r where "Some r = ra  rb"
    by (metis assms(1) asso3 commutative compatible_def option.collapse)
  then have "Some x' = x  r"
    by (meson Some a' = a  ra Some b' = b  rb assms(1) assms(2) move_sum)
  then show ?thesis
    using larger_def by blast
qed

lemma larger_first_sum:
  assumes "Some y = a  b"
      and "x  y"
    shows "a'. Some x = a'  b  a'  a"
proof -
  obtain r where "Some x = y  r"
    using assms(2) larger_def by auto
  then obtain a' where "Some a' = a  r"
    by (metis assms(1) asso2 commutative compatible_def option.collapse)
  then show ?thesis
    by (metis Some x = y  r assms(1) asso1 commutative larger_def)
qed

lemma larger_implies_compatible:
  assumes "x  y"
  shows "x ## y"
  by (metis assms compatible_def compatible_smaller distrib_mult one_neutral option.distinct(1))







section ‹Frame rule›

text ‹This section corresponds to Section 2.5 of the paper~cite"UnboundedSL".›

definition safe :: "('a × ('d  'c)) command  ('a × ('d  'c))  bool" where
  "safe c σ  (σ, None)  c"

definition safety_monotonicity :: "('a × ('d  'c)) command  bool" where
  "safety_monotonicity c  (σ σ' s. valid σ'  σ'  σ  safe c (σ, s)  safe c (σ', s))"

definition frame_property :: "('a × ('d  'c)) command  bool" where
  "frame_property c  (σ σ0 r σ' s s'. valid σ  valid σ'  safe c (σ0, s)  Some σ = σ0  r  ((σ, s), Some (σ', s'))  c
   (σ0'. Some σ' = σ0'  r  ((σ0, s), Some (σ0', s'))  c))"

definition valid_hoare_triple :: "('a, 'b, 'c, 'd) assertion  ('a × ('d  'c)) command  ('a, 'b, 'c, 'd) assertion  ('d, 'c, 'a) interp  bool" where
  "valid_hoare_triple P c Q Δ  (σ s. valid σ  σ, s, Δ  P  safe c (σ, s)  (σ' s'. ((σ, s), Some (σ', s'))  c  σ', s', Δ  Q))"

lemma valid_hoare_tripleI:
  assumes "σ s. valid σ  σ, s, Δ  P  safe c (σ, s)"
      and "σ s σ' s'. valid σ  σ, s, Δ  P  ((σ, s), Some (σ', s'))  c  σ', s', Δ  Q"
    shows "valid_hoare_triple P c Q Δ"
  using assms(1) assms(2) valid_hoare_triple_def by blast

definition valid_command :: "('a × ('d  'c)) command  bool" where
  "valid_command c  (a b sa sb. ((a, sa), Some (b, sb))  c  valid a  valid b)"

definition modified :: "('a × ('d  'c)) command  'd set" where
  "modified c = { x |x. σ s σ' s'. ((σ, s), Some (σ', s'))  c  s x  s' x }"

definition equal_outside :: "('d  'c)  ('d  'c)  'd set  bool" where
  "equal_outside s s' S  (x. x  S  s x = s' x)"



definition not_in_fv :: "('a, 'b, 'c, 'd) assertion  'd set  bool" where
  "not_in_fv A S  (σ s Δ s'. equal_outside s s' S  (σ, s, Δ  A  σ, s', Δ  A))"



lemma not_in_fv_mod:
  assumes "not_in_fv A (modified c)"
  and "((σ, s), Some (σ', s'))  c"
  shows "x, s, Δ  A  x, s', Δ  A"
proof -
  have "x. x  (modified c)  s x = s' x"
  proof -
    fix x assume "x  (modified c)"
    then show "s x = s' x"
      by (metis (mono_tags, lifting) CollectI assms(2) modified_def)
  qed
  then have "equal_outside s s' (modified c)"
    by (simp add: equal_outside_def)
  then show ?thesis
    using assms(1) not_in_fv_def by blast
qed


text ‹This theorem corresponds to Theorem 2 of the paper~cite"UnboundedSL".›

theorem frame_rule:
  assumes "valid_command c"
      and "safety_monotonicity c"
      and "frame_property c"
      and "valid_hoare_triple P c Q Δ"
      and "not_in_fv R (modified c)"
    shows "valid_hoare_triple (Star P R) c (Star Q R) Δ"
proof (rule valid_hoare_tripleI)
  fix σ s assume asm0: "valid σ  σ, s, Δ  Star P R"
  then obtain p r where "Some σ = p  r" "p, s, Δ  P" "r, s, Δ  R"
    by auto
  then have "safe c (p, s)"
    by (metis asm0 assms(4) larger_def logic.valid_mono logic_axioms valid_hoare_triple_def)
  then show "safe c (σ, s)"
    using Some σ = p  r assms(2) larger_def safety_monotonicity_def asm0 by blast
  fix σ' s' assume asm1: "((σ, s), Some (σ', s'))  c"
  then obtain q where "Some σ' = q  r" "((p, s), Some (q, s'))  c"
    using Some σ = p  r safe c (p, s) asm0 assms(1) assms(3) frame_property_def valid_command_def by blast
  moreover have "r, s', Δ  R"
    by (meson r, s, Δ  R assms(5) calculation(2) logic.not_in_fv_mod logic_axioms)
  ultimately show "σ', s', Δ  Star Q R"
    by (meson Some σ = p  r p, s, Δ  P r, s, Δ  R asm0 assms(4) larger_def sat.simps(2) valid_hoare_triple_def valid_mono)
qed


lemma hoare_triple_input:
  "valid_hoare_triple P c Q Δ  valid_hoare_triple (Bounded P) c Q Δ"
  using sat.simps(11) valid_hoare_triple_def by blast


lemma hoare_triple_output:
  assumes "valid_command c"
  shows "valid_hoare_triple P c Q Δ  valid_hoare_triple P c (Bounded Q) Δ"
  using assms valid_command_def valid_hoare_triple_def by fastforce



end

end