Theory Imp_List_Spec
section ‹Interface for Lists›
theory Imp_List_Spec
imports "../Sep_Main"
begin
text ‹
This file specifies an abstract interface for list data structures. It can
be implemented by concrete list data structures, as demonstrated in the open
and circular singly linked list examples.
›
locale imp_list =
fixes is_list :: "'a list ⇒ 'l ⇒ assn"
assumes precise: "precise is_list"
locale imp_list_empty = imp_list +
constrains is_list :: "'a list ⇒ 'l ⇒ assn"
fixes empty :: "'l Heap"
assumes empty_rule[sep_heap_rules]: "<emp> empty <is_list []>⇩t"
locale imp_list_is_empty = imp_list +
constrains is_list :: "'a list ⇒ 'l ⇒ assn"
fixes is_empty :: "'l ⇒ bool Heap"
assumes is_empty_rule[sep_heap_rules]:
"<is_list l p> is_empty p <λr. is_list l p * ↑(r ⟷ l=[])>⇩t"
locale imp_list_append = imp_list +
constrains is_list :: "'a list ⇒ 'l ⇒ assn"
fixes append :: "'a ⇒ 'l ⇒ 'l Heap"
assumes append_rule[sep_heap_rules]:
"<is_list l p> append a p <is_list (l@[a])>⇩t"
locale imp_list_prepend = imp_list +
constrains is_list :: "'a list ⇒ 'l ⇒ assn"
fixes prepend :: "'a ⇒ 'l ⇒ 'l Heap"
assumes prepend_rule[sep_heap_rules]:
"<is_list l p> prepend a p <is_list (a#l)>⇩t"
locale imp_list_head = imp_list +
constrains is_list :: "'a list ⇒ 'l ⇒ assn"
fixes head :: "'l ⇒ 'a Heap"
assumes head_rule[sep_heap_rules]:
"l≠[] ⟹ <is_list l p> head p <λr. is_list l p * ↑(r=hd l)>⇩t"
locale imp_list_pop = imp_list +
constrains is_list :: "'a list ⇒ 'l ⇒ assn"
fixes pop :: "'l ⇒ ('a×'l) Heap"
assumes pop_rule[sep_heap_rules]:
"l≠[] ⟹
<is_list l p>
pop p
<λ(r,p'). is_list (tl l) p' * ↑(r=hd l)>⇩t"
locale imp_list_rotate = imp_list +
constrains is_list :: "'a list ⇒ 'l ⇒ assn"
fixes rotate :: "'l ⇒ 'l Heap"
assumes rotate_rule[sep_heap_rules]:
"<is_list l p> rotate p <is_list (rotate1 l)>⇩t"
locale imp_list_reverse = imp_list +
constrains is_list :: "'a list ⇒ 'l ⇒ assn"
fixes reverse :: "'l ⇒ 'l Heap"
assumes reverse_rule[sep_heap_rules]:
"<is_list l p> reverse p <is_list (rev l)>⇩t"
locale imp_list_iterate = imp_list +
constrains is_list :: "'a list ⇒ 'l ⇒ assn"
fixes is_it :: "'a list ⇒ 'l ⇒ 'a list ⇒ 'it ⇒ assn"
fixes it_init :: "'l ⇒ ('it) Heap"
fixes it_has_next :: "'it ⇒ bool Heap"
fixes it_next :: "'it ⇒ ('a×'it) Heap"
assumes it_init_rule[sep_heap_rules]:
"<is_list l p> it_init p <is_it l p l>⇩t"
assumes it_next_rule[sep_heap_rules]: "l'≠[] ⟹
<is_it l p l' it>
it_next it
<λ(a,it'). is_it l p (tl l') it' * ↑(a=hd l')>⇩t"
assumes it_has_next_rule[sep_heap_rules]:
"<is_it l p l' it>
it_has_next it
<λr. is_it l p l' it * ↑(r⟷l'≠[])>⇩t"
assumes quit_iteration:
"is_it l p l' it ⟹⇩A is_list l p * true"
end