Theory HOL-Hoare.Hoare_Logic_Abort

(*  Title:      HOL/Hoare/Hoare_Logic_Abort.thy
    Author:     Leonor Prensa Nieto & Tobias Nipkow
    Copyright   2003 TUM
    Author:     Walter Guttmann (extension to total-correctness proofs)
*)

section ‹Hoare Logic with an Abort statement for modelling run time errors›

theory Hoare_Logic_Abort
  imports Hoare_Syntax Hoare_Tac
begin

type_synonym 'a bexp = "'a set"
type_synonym 'a assn = "'a set"
type_synonym 'a var = "'a  nat"

datatype 'a com =
  Basic "'a  'a"
| Abort
| Seq "'a com" "'a com"
| Cond "'a bexp" "'a com" "'a com"
| While "'a bexp" "'a com"

abbreviation annskip (SKIP) where "SKIP == Basic id"

type_synonym 'a sem = "'a option => 'a option => bool"

inductive Sem :: "'a com  'a sem"
where
  "Sem (Basic f) None None"
| "Sem (Basic f) (Some s) (Some (f s))"
| "Sem Abort s None"
| "Sem c1 s s''  Sem c2 s'' s'  Sem (Seq c1 c2) s s'"
| "Sem (Cond b c1 c2) None None"
| "s  b  Sem c1 (Some s) s'  Sem (Cond b c1 c2) (Some s) s'"
| "s  b  Sem c2 (Some s) s'  Sem (Cond b c1 c2) (Some s) s'"
| "Sem (While b c) None None"
| "s  b  Sem (While b c) (Some s) (Some s)"
| "s  b  Sem c (Some s) s''  Sem (While b c) s'' s' 
   Sem (While b c) (Some s) s'"

inductive_cases [elim!]:
  "Sem (Basic f) s s'" "Sem (Seq c1 c2) s s'"
  "Sem (Cond b c1 c2) s s'"

lemma Sem_deterministic:
  assumes "Sem c s s1"
      and "Sem c s s2"
    shows "s1 = s2"
proof -
  have "Sem c s s1  (s2. Sem c s s2  s1 = s2)"
    by (induct rule: Sem.induct) (subst Sem.simps, blast)+
  thus ?thesis
    using assms by simp
qed

definition Valid :: "'a bexp  'a com  'a anno  'a bexp  bool"
  where "Valid p c a q  s s'. Sem c s s'  s  Some ` p  s'  Some ` q"

definition ValidTC :: "'a bexp  'a com  'a anno  'a bexp  bool"
  where "ValidTC p c a q  s . s  p  (t . Sem c (Some s) (Some t)  t  q)"

lemma tc_implies_pc:
  "ValidTC p c a q  Valid p c a q"
  by (smt (verit) Sem_deterministic ValidTC_def Valid_def image_iff)

lemma tc_extract_function:
  "ValidTC p c a q  f . s . s  p  f s  q"
  by (meson ValidTC_def)

text ‹The proof rules for partial correctness›

lemma SkipRule: "p  q  Valid p (Basic id) a q"
by (auto simp:Valid_def)

lemma BasicRule: "p  {s. f s  q}  Valid p (Basic f) a q"
by (auto simp:Valid_def)

lemma SeqRule: "Valid P c1 a1 Q  Valid Q c2 a2 R  Valid P (Seq c1 c2) (Aseq a1 a2) R"
by (auto simp:Valid_def)

lemma CondRule:
 "p  {s. (s  b  s  w)  (s  b  s  w')}
   Valid w c1 a1 q  Valid w' c2 a2 q  Valid p (Cond b c1 c2) (Acond a1 a2) q"
by (fastforce simp:Valid_def image_def)

lemma While_aux:
  assumes "Sem (While b c) s s'"
  shows "s s'. Sem c s s'  s  Some ` (I  b)  s'  Some ` I 
    s  Some ` I  s'  Some ` (I  -b)"
  using assms
  by (induct "While b c" s s') auto

lemma WhileRule:
 "p  i  Valid (i  b) c (A 0) i  i  (-b)  q  Valid p (While b c) (Awhile i v A) q"
apply (clarsimp simp:Valid_def)
apply(drule While_aux)
  apply assumption
 apply blast
apply blast
done

lemma AbortRule: "p  {s. False}  Valid p Abort a q"
by(auto simp:Valid_def)

text ‹The proof rules for total correctness›

lemma SkipRuleTC:
  assumes "p  q"
    shows "ValidTC p (Basic id) a q"
  by (metis Sem.intros(2) ValidTC_def assms id_def subsetD)

lemma BasicRuleTC:
  assumes "p  {s. f s  q}"
    shows "ValidTC p (Basic f) a q"
  by (metis Ball_Collect Sem.intros(2) ValidTC_def assms)

lemma SeqRuleTC:
  assumes "ValidTC p c1 a1 q"
      and "ValidTC q c2 a2 r"
    shows "ValidTC p (Seq c1 c2) (Aseq a1 a2) r"
  by (meson assms Sem.intros(4) ValidTC_def)

lemma CondRuleTC:
 assumes "p  {s. (s  b  s  w)  (s  b  s  w')}"
     and "ValidTC w c1 a1 q"
     and "ValidTC w' c2 a2 q"
   shows "ValidTC p (Cond b c1 c2) (Acons a1 a2)  q"
proof (unfold ValidTC_def, rule allI)
  fix s
  show "s  p  (t . Sem (Cond b c1 c2) (Some s) (Some t)  t  q)"
    apply (cases "s  b")
    apply (metis (mono_tags, lifting) Ball_Collect Sem.intros(6) ValidTC_def assms(1,2))
    by (metis (mono_tags, lifting) Ball_Collect Sem.intros(7) ValidTC_def assms(1,3))
qed

lemma WhileRuleTC:
  assumes "p  i"
      and "n::nat . ValidTC (i  b  {s . v s = n}) c (A n) (i  {s . v s < n})"
      and "i  uminus b  q"
    shows "ValidTC p (While b c) (Awhile i v A) q"
proof -
  have "s  i  v s = n  (t . Sem (While b c) (Some s) (Some t)  t  q)" for s n
  proof (induction "n" arbitrary: s rule: less_induct)
    fix n :: nat
    fix s :: 'a
    assume 1: "(m::nat) s::'a . m < n  s  i  v s = m  (t . Sem (While b c) (Some s) (Some t)  t  q)"
    show "s  i  v s = n  (t . Sem (While b c) (Some s) (Some t)  t  q)"
    proof (rule impI, cases "s  b")
      assume 2: "s  b" and "s  i  v s = n"
      hence "s  i  b  {s . v s = n}"
        using assms(1) by auto
      hence "t . Sem c (Some s) (Some t)  t  i  {s . v s < n}"
        by (metis assms(2) ValidTC_def)
      from this obtain t where 3: "Sem c (Some s) (Some t)  t  i  {s . v s < n}"
        by auto
      hence "u . Sem (While b c) (Some t) (Some u)  u  q"
        using 1 by auto
      thus "t . Sem (While b c) (Some s) (Some t)  t  q"
        using 2 3 Sem.intros(10) by force
    next
      assume "s  b" and "s  i  v s = n"
      thus "t . Sem (While b c) (Some s) (Some t)  t  q"
        using Sem.intros(9) assms(3) by fastforce
    qed
  qed
  thus ?thesis
    using assms(1) ValidTC_def by force
qed


subsection ‹Concrete syntax›

setup Hoare_Syntax.setup
   {Basic = const_syntaxBasic,
    Skip = const_syntaxannskip,
    Seq = const_syntaxSeq,
    Cond = const_syntaxCond,
    While = const_syntaxWhile,
    Valid = const_syntaxValid,
    ValidTC = const_syntaxValidTC}

― ‹Special syntax for guarded statements and guarded array updates:›
syntax
  "_guarded_com" :: "bool  'a com  'a com"
    ((‹indent=2 notation=‹mixfix Hoare guarded statement››_ / _) 71)
  "_array_update" :: "'a list  nat  'a  'a com"
    ((‹indent=2 notation=‹mixfix Hoare array update››_[_] :=/ _) [70, 65] 61)
translations
  "P  c"  "IF P THEN c ELSE CONST Abort FI"
  "a[i] := v"  "(i < CONST length a)  (a := CONST list_update a i v)"
  ― ‹reverse translation not possible because of duplicate a›

text ‹
  Note: there is no special syntax for guarded array access. Thus
  you must write j < length a → a[i] := a!j›.
›


subsection ‹Proof methods: VCG›

declare BasicRule [Hoare_Tac.BasicRule]
  and SkipRule [Hoare_Tac.SkipRule]
  and AbortRule [Hoare_Tac.AbortRule]
  and SeqRule [Hoare_Tac.SeqRule]
  and CondRule [Hoare_Tac.CondRule]
  and WhileRule [Hoare_Tac.WhileRule]

declare BasicRuleTC [Hoare_Tac.BasicRuleTC]
  and SkipRuleTC [Hoare_Tac.SkipRuleTC]
  and SeqRuleTC [Hoare_Tac.SeqRuleTC]
  and CondRuleTC [Hoare_Tac.CondRuleTC]
  and WhileRuleTC [Hoare_Tac.WhileRuleTC]

method_setup vcg = Scan.succeed (fn ctxt => SIMPLE_METHOD' (Hoare_Tac.hoare_tac ctxt (K all_tac)))
  "verification condition generator"

method_setup vcg_simp = Scan.succeed (fn ctxt =>
    SIMPLE_METHOD' (Hoare_Tac.hoare_tac ctxt (asm_full_simp_tac ctxt)))
  "verification condition generator plus simplification"

method_setup vcg_tc = Scan.succeed (fn ctxt => SIMPLE_METHOD' (Hoare_Tac.hoare_tc_tac ctxt (K all_tac)))
  "verification condition generator"

method_setup vcg_tc_simp = Scan.succeed (fn ctxt =>
    SIMPLE_METHOD' (Hoare_Tac.hoare_tc_tac ctxt (asm_full_simp_tac ctxt)))
  "verification condition generator plus simplification"

end