Theory HeapImperative
section ‹Verification of Imperative Heap Sort›
theory HeapImperative
imports Heap
begin
primrec left :: "'a Tree ⇒ 'a Tree" where
"left (T v l r) = l"
abbreviation left_val :: "'a Tree ⇒ 'a" where
"left_val t ≡ val (left t)"
primrec right :: "'a Tree ⇒ 'a Tree" where
"right (T v l r) = r"
abbreviation right_val :: "'a Tree ⇒ 'a" where
"right_val t ≡ val (right t)"
abbreviation set_val :: "'a Tree ⇒ 'a ⇒ 'a Tree" where
"set_val t x ≡ T x (left t) (right t)"
text‹The first step is to implement function {\em siftDown}. If some node
does not satisfy heap property, this function moves it down the heap
until it does. For a node is checked weather it satisfies heap property or not. If it
does nothing is changed. If it does not, value of the root node
becomes a value of the larger child and the value of that child
becomes the value of the root node. This is the reason this function
is called {\tt siftDown} -- value of the node is places down in the
heap. Now, the problem is that the child node may not satisfy the heap
property and that is the reason why function {\tt siftDown} is
recursively applied.›
fun siftDown :: "'a::linorder Tree ⇒ 'a Tree" where
"siftDown E = E"
| "siftDown (T v E E) = T v E E"
| "siftDown (T v l E) =
(if v ≥ val l then T v l E else T (val l) (siftDown (set_val l v)) E)"
| "siftDown (T v E r) =
(if v ≥ val r then T v E r else T (val r) E (siftDown (set_val r v)))"
| "siftDown (T v l r) =
(if val l ≥ val r then
if v ≥ val l then T v l r else T (val l) (siftDown (set_val l v)) r
else
if v ≥ val r then T v l r else T (val r) l (siftDown (set_val r v)))"
lemma siftDown_Node:
assumes "t = T v l r"
shows "∃ l' v' r'. siftDown t = T v' l' r' ∧ v' ≥ v"
using assms
apply(induct t rule:siftDown.induct)
by auto
lemma siftDown_in_tree:
assumes "t ≠ E"
shows "in_tree (val (siftDown t)) t"
using assms
apply(induct t rule:siftDown.induct)
by auto
lemma siftDown_in_tree_set:
shows "in_tree v t ⟷ in_tree v (siftDown t)"
proof
assume "in_tree v t"
thus "in_tree v (siftDown t)"
apply (induct t rule:siftDown.induct)
by auto
next
assume " in_tree v (siftDown t)"
thus "in_tree v t"
proof (induct t rule:siftDown.induct)
case 1
thus ?case
by auto
next
case (2 v1)
thus ?case
by auto
next
case (3 v2 v1 l1 r1)
show ?case
proof(cases "v2 ≥ v1")
case True
thus ?thesis
using 3
by auto
next
case False
show ?thesis
proof(cases "v1 = v")
case True
thus ?thesis
using 3 False
by auto
next
case False
hence "in_tree v (siftDown (set_val (T v1 l1 r1) v2))"
using ‹¬ v2 ≥ v1› 3(2)
by auto
hence "in_tree v (T v2 l1 r1)"
using 3(1) ‹¬ v2 ≥ v1›
by auto
thus ?thesis
proof(cases "v2 = v")
case True
thus ?thesis
by auto
next
case False
hence "in_tree v (T v1 l1 r1)"
using ‹in_tree v (T v2 l1 r1)›
by auto
thus ?thesis
by auto
qed
qed
qed
next
case (4 v2 v1 l1 r1)
show ?case
proof(cases "v2 ≥ v1")
case True
thus ?thesis
using 4
by auto
next
case False
show ?thesis
proof(cases "v1 = v")
case True
thus ?thesis
using 4 False
by auto
next
case False
hence "in_tree v (siftDown (set_val (T v1 l1 r1) v2))"
using ‹¬ v2 ≥ v1› 4(2)
by auto
hence "in_tree v (T v2 l1 r1)"
using 4(1) ‹¬ v2 ≥ v1›
by auto
thus ?thesis
proof(cases "v2 = v")
case True
thus ?thesis
by auto
next
case False
hence "in_tree v (T v1 l1 r1)"
using ‹in_tree v (T v2 l1 r1)›
by auto
thus ?thesis
by auto
qed
qed
qed
next
case ("5_1" v' v1 l1 r1 v2 l2 r2)
show ?case
proof(cases "v = v' ∨ v= v1 ∨ v = v2")
case True
thus ?thesis
by auto
next
case False
show ?thesis
proof(cases "v1 ≥ v2")
case True
show ?thesis
proof(cases "v' ≥ v1")
case True
thus ?thesis
using ‹v1 ≥ v2› "5_1"
by auto
next
case False
thus ?thesis
proof(cases "in_tree v (T v2 l2 r2)")
case True
thus ?thesis
by auto
next
case False
hence "in_tree v (siftDown (set_val (T v1 l1 r1) v'))"
using "5_1"(3) ‹¬ in_tree v (T v2 l2 r2)› ‹v1 ≥ v2› ‹¬ v' ≥ v1›
using ‹ ¬ (v = v' ∨ v = v1 ∨ v = v2)›
by auto
hence "in_tree v (T v' l1 r1)"
using "5_1"(1) ‹v1 ≥ v2› ‹¬ v' ≥ v1›
by auto
hence "in_tree v (T v1 l1 r1)"
using ‹¬ (v = v' ∨ v = v1 ∨ v = v2)›
by auto
thus ?thesis
by auto
qed
qed
next
case False
show ?thesis
proof(cases "v' ≥ v2")
case True
thus ?thesis
using ‹¬ v1 ≥ v2› "5_1"
by auto
next
case False
thus ?thesis
proof(cases "in_tree v (T v1 l1 r1)")
case True
thus ?thesis
by auto
next
case False
hence "in_tree v (siftDown (set_val (T v2 l2 r2) v'))"
using "5_1"(3) ‹¬ in_tree v (T v1 l1 r1)› ‹¬ v1 ≥ v2› ‹¬ v' ≥ v2›
using ‹ ¬ (v = v' ∨ v = v1 ∨ v = v2)›
by auto
hence "in_tree v (T v' l2 r2)"
using "5_1"(2) ‹¬ v1 ≥ v2› ‹¬ v' ≥ v2›
by auto
hence "in_tree v (T v2 l2 r2)"
using ‹¬ (v = v' ∨ v = v1 ∨ v = v2)›
by auto
thus ?thesis
by auto
qed
qed
qed
qed
next
case ("5_2" v' v1 l1 r1 v2 l2 r2)
show ?case
proof(cases "v = v' ∨ v= v1 ∨ v = v2")
case True
thus ?thesis
by auto
next
case False
show ?thesis
proof(cases "v1 ≥ v2")
case True
show ?thesis
proof(cases "v' ≥ v1")
case True
thus ?thesis
using ‹v1 ≥ v2› "5_2"
by auto
next
case False
thus ?thesis
proof(cases "in_tree v (T v2 l2 r2)")
case True
thus ?thesis
by auto
next
case False
hence "in_tree v (siftDown (set_val (T v1 l1 r1) v'))"
using "5_2"(3) ‹¬ in_tree v (T v2 l2 r2)› ‹v1 ≥ v2› ‹¬ v' ≥ v1›
using ‹ ¬ (v = v' ∨ v = v1 ∨ v = v2)›
by auto
hence "in_tree v (T v' l1 r1)"
using "5_2"(1) ‹v1 ≥ v2› ‹¬ v' ≥ v1›
by auto
hence "in_tree v (T v1 l1 r1)"
using ‹¬ (v = v' ∨ v = v1 ∨ v = v2)›
by auto
thus ?thesis
by auto
qed
qed
next
case False
show ?thesis
proof(cases "v' ≥ v2")
case True
thus ?thesis
using ‹¬ v1 ≥ v2› "5_2"
by auto
next
case False
thus ?thesis
proof(cases "in_tree v (T v1 l1 r1)")
case True
thus ?thesis
by auto
next
case False
hence "in_tree v (siftDown (set_val (T v2 l2 r2) v'))"
using "5_2"(3) ‹¬ in_tree v (T v1 l1 r1)› ‹¬ v1 ≥ v2› ‹¬ v' ≥ v2›
using ‹ ¬ (v = v' ∨ v = v1 ∨ v = v2)›
by auto
hence "in_tree v (T v' l2 r2)"
using "5_2"(2) ‹¬ v1 ≥ v2› ‹¬ v' ≥ v2›
by auto
hence "in_tree v (T v2 l2 r2)"
using ‹¬ (v = v' ∨ v = v1 ∨ v = v2)›
by auto
thus ?thesis
by auto
qed
qed
qed
qed
qed
qed
lemma siftDown_heap_is_heap:
assumes "is_heap l" "is_heap r" "t = T v l r"
shows "is_heap (siftDown t)"
using assms
proof (induct t arbitrary: v l r rule:siftDown.induct)
case 1
thus ?case
by simp
next
case (2 v')
show ?case
by simp
next
case (3 v2 v1 l1 r1)
show ?case
proof (cases "v2 ≥ v1")
case True
thus ?thesis
using 3(2) 3(4)
by auto
next
case False
show ?thesis
proof-
let ?t = "siftDown (T v2 l1 r1)"
obtain l' v' r' where *: "?t = T v' l' r'" "v' ≥ v2"
using siftDown_Node[of "T v2 l1 r1" v2 l1 r1]
by auto
have "l = T v1 l1 r1"
using 3(4)
by auto
hence "is_heap l1" "is_heap r1"
using 3(2)
apply (induct l rule:is_heap.induct)
by auto
hence "is_heap ?t"
using 3(1)[of l1 r1 v2] False 3
by auto
show ?thesis
proof (cases "v' = v2")
case True
thus ?thesis
using False ‹is_heap ?t› *
by auto
next
case False
have "in_tree v' ?t"
using *
using siftDown_in_tree[of ?t]
by simp
hence "in_tree v' (T v2 l1 r1)"
using siftDown_in_tree_set[symmetric, of v' "T v2 l1 r1"]
by auto
hence "in_tree v' (T v1 l1 r1)"
using False
by simp
hence "v1 ≥ v'"
using 3
using is_heap_max[of v' "T v1 l1 r1"]
by auto
thus ?thesis
using ‹is_heap ?t› * ‹¬ v2 ≥ v1›
by auto
qed
qed
qed
next
case (4 v2 v1 l1 r1)
show ?case
proof(cases "v2 ≥ v1")
case True
thus ?thesis
using 4(2-4)
by auto
next
case False
let ?t = "siftDown (T v2 l1 r1)"
obtain v' l' r' where *: "?t = T v' l' r'" "v' ≥ v2"
using siftDown_Node[of "T v2 l1 r1" v2 l1 r1]
by auto
have "r = T v1 l1 r1"
using 4(4)
by auto
hence "is_heap l1" "is_heap r1"
using 4(3)
apply (induct r rule:is_heap.induct)
by auto
hence "is_heap ?t"
using False 4(1)[of l1 r1 v2]
by auto
show ?thesis
proof(cases "v' = v2")
case True
thus ?thesis
using * ‹is_heap ?t› False
by auto
next
case False
have "in_tree v' ?t"
using *
using siftDown_in_tree[of ?t]
by auto
hence "in_tree v' (T v2 l1 r1)"
using * siftDown_in_tree_set[of v' "T v2 l1 r1"]
by auto
hence "in_tree v' (T v1 l1 r1)"
using False
by auto
hence "v1 ≥ v'"
using is_heap_max[of v' "T v1 l1 r1"] 4
by auto
thus ?thesis
using ‹is_heap ?t› False *
by auto
qed
qed
next
case ("5_1" v1 v2 l2 r2 v3 l3 r3)
show ?case
proof(cases "v2 ≥ v3")
case True
show ?thesis
proof(cases "v1 ≥ v2")
case True
thus ?thesis
using ‹v2 ≥ v3› "5_1"
by auto
next
case False
let ?t = "siftDown (T v1 l2 r2)"
obtain l' v' r' where *: "?t = T v' l' r'" "v' ≥ v1"
using siftDown_Node
by blast
have "is_heap l2" "is_heap r2"
using "5_1"(3, 5)
apply(induct l rule:is_heap.induct)
by auto
hence "is_heap ?t"
using "5_1"(1)[of l2 r2 v1] ‹v2 ≥ v3› False
by auto
have "v2 ≥ v'"
proof(cases "v' = v1")
case True
thus ?thesis
using False
by auto
next
case False
have "in_tree v' ?t"
using * siftDown_in_tree
by auto
hence "in_tree v' (T v1 l2 r2)"
using siftDown_in_tree_set[of v' "T v1 l2 r2"]
by auto
hence "in_tree v' (T v2 l2 r2)"
using False
by auto
thus ?thesis
using is_heap_max[of v' "T v2 l2 r2"] "5_1"
by auto
qed
thus ?thesis
using ‹is_heap ?t› ‹v2 ≥ v3› * False "5_1"
by auto
qed
next
case False
show ?thesis
proof(cases "v1 ≥ v3")
case True
thus ?thesis
using ‹¬ v2 ≥ v3› "5_1"
by auto
next
case False
let ?t = "siftDown (T v1 l3 r3)"
obtain l' v' r' where *: "?t = T v' l' r'" "v' ≥ v1"
using siftDown_Node
by blast
have "is_heap l3" "is_heap r3"
using "5_1"(4, 5)
apply(induct r rule:is_heap.induct)
by auto
hence "is_heap ?t"
using "5_1"(2)[of l3 r3 v1] ‹¬ v2 ≥ v3› False
by auto
have "v3 ≥ v'"
proof(cases "v' = v1")
case True
thus ?thesis
using False
by auto
next
case False
have "in_tree v' ?t"
using * siftDown_in_tree
by auto
hence "in_tree v' (T v1 l3 r3)"
using siftDown_in_tree_set[of v' "T v1 l3 r3"]
by auto
hence "in_tree v' (T v3 l3 r3)"
using False
by auto
thus ?thesis
using is_heap_max[of v' "T v3 l3 r3"] "5_1"
by auto
qed
thus ?thesis
using ‹is_heap ?t› ‹¬ v2 ≥ v3› * False "5_1"
by auto
qed
qed
next
case ("5_2" v1 v2 l2 r2 v3 l3 r3)
show ?case
proof(cases "v2 ≥ v3")
case True
show ?thesis
proof(cases "v1 ≥ v2")
case True
thus ?thesis
using ‹v2 ≥ v3› "5_2"
by auto
next
case False
let ?t = "siftDown (T v1 l2 r2)"
obtain l' v' r' where *: "?t = T v' l' r'" "v1 ≤ v'"
using siftDown_Node
by blast
have "is_heap l2" "is_heap r2"
using "5_2"(3, 5)
apply(induct l rule:is_heap.induct)
by auto
hence "is_heap ?t"
using "5_2"(1)[of l2 r2 v1] ‹v2 ≥ v3› False
by auto
have "v2 ≥ v'"
proof(cases "v' = v1")
case True
thus ?thesis
using False
by auto
next
case False
have "in_tree v' ?t"
using * siftDown_in_tree
by auto
hence "in_tree v' (T v1 l2 r2)"
using siftDown_in_tree_set[of v' "T v1 l2 r2"]
by auto
hence "in_tree v' (T v2 l2 r2)"
using False
by auto
thus ?thesis
using is_heap_max[of v' "T v2 l2 r2"] "5_2"
by auto
qed
thus ?thesis
using ‹is_heap ?t› ‹v2 ≥ v3› * False "5_2"
by auto
qed
next
case False
show ?thesis
proof(cases "v1 ≥ v3")
case True
thus ?thesis
using ‹¬ v2 ≥ v3› "5_2"
by auto
next
case False
let ?t = "siftDown (T v1 l3 r3)"
obtain l' v' r' where *: "?t = T v' l' r'" "v' ≥ v1"
using siftDown_Node
by blast
have "is_heap l3" "is_heap r3"
using "5_2"(4, 5)
apply(induct r rule:is_heap.induct)
by auto
hence "is_heap ?t"
using "5_2"(2)[of l3 r3 v1] ‹¬ v2 ≥ v3› False
by auto
have "v3 ≥ v'"
proof(cases "v' = v1")
case True
thus ?thesis
using False
by auto
next
case False
have "in_tree v' ?t"
using * siftDown_in_tree
by auto
hence "in_tree v' (T v1 l3 r3)"
using siftDown_in_tree_set[of v' "T v1 l3 r3"]
by auto
hence "in_tree v' (T v3 l3 r3)"
using False
by auto
thus ?thesis
using is_heap_max[of v' "T v3 l3 r3"] "5_2"
by auto
qed
thus ?thesis
using ‹is_heap ?t› ‹¬ v2 ≥ v3› * False "5_2"
by auto
qed
qed
qed
text‹Definition of the function {\em heapify} which
makes a heap from any given binary tree.›
primrec heapify where
"heapify E = E"
| "heapify (T v l r) = siftDown (T v (heapify l) (heapify r))"
lemma heapify_heap_is_heap:
"is_heap (heapify t)"
proof(induct t)
case E
thus ?case
by auto
next
case (T v l r)
thus ?case
using siftDown_heap_is_heap[of "heapify l" "heapify r" "T v (heapify l) (heapify r)" v]
by auto
qed
text‹Definition of {\em removeLeaf} function. Function returns two values. The first one
is the value of romoved leaf element. The second returned value is tree without that leaf.›
fun removeLeaf:: "'a::linorder Tree ⇒ 'a × 'a Tree" where
"removeLeaf (T v E E) = (v, E)"
| "removeLeaf (T v l E) = (fst (removeLeaf l), T v (snd (removeLeaf l)) E)"
| "removeLeaf (T v E r) = (fst (removeLeaf r), T v E (snd (removeLeaf r)))"
| "removeLeaf (T v l r) = (fst (removeLeaf l), T v (snd (removeLeaf l)) r)"
text‹Function {\em of\_list\_tree} makes a binary tree from any given
list.›
primrec of_list_tree:: "'a::linorder list ⇒ 'a Tree" where
"of_list_tree [] = E"
| "of_list_tree (v # tail) = T v (of_list_tree tail) E"
text‹By applying {\em heapify} binary tree is transformed into
heap.›
definition hs_of_list where
"hs_of_list l = heapify (of_list_tree l)"
text‹Definition of function {\em hs\_remove\_max}. As it is already well
established, finding maximum is not a problem, since it is in the root
element of the heap. The root element is replaced with leaf of the
heap and that leaf is erased from its previous position. However, now
the new root element may not satisfy heap property and that is the
reason to apply function {\em siftDown}.›
definition hs_remove_max :: "'a::linorder Tree ⇒ 'a × 'a Tree" where
"hs_remove_max t ≡
(let v' = fst (removeLeaf t);
t' = snd (removeLeaf t) in
(if t' = E then (val t, E)
else (val t, siftDown (set_val t' v'))))"
definition hs_is_empty where
[simp]: "hs_is_empty t ⟷ t = E"
lemma siftDown_multiset:
"multiset (siftDown t) = multiset t"
proof(induct t rule:siftDown.induct)
case 1
thus ?case
by simp
next
case (2 v)
thus ?case
by simp
next
case (3 v1 v l r)
thus ?case
proof(cases "v ≤ v1")
case True
thus ?thesis
by auto
next
case False
hence "multiset (siftDown (T v1 (T v l r) E)) =
multiset l + {#v1#} + multiset r + {#v#}"
using 3
by auto
moreover
have "multiset (T v1 (T v l r) E) =
multiset l + {#v#} + multiset r + {#v1#}"
by auto
moreover
have "multiset l + {#v1#} + multiset r + {#v#} =
multiset l + {#v#} + multiset r + {#v1#}"
by (metis union_commute union_lcomm)
ultimately
show ?thesis
by auto
qed
next
case (4 v1 v l r)
thus ?case
proof(cases "v ≤ v1")
case True
thus ?thesis
by auto
next
case False
have "multiset (set_val (T v l r) v1) =
multiset l + {#v1#} + multiset r"
by auto
hence "multiset (siftDown (T v1 E (T v l r))) =
{#v#} + multiset (set_val (T v l r) v1)"
using 4 False
by auto
hence "multiset (siftDown (T v1 E (T v l r))) =
{#v#} + multiset l + {#v1#} + multiset r"
using ‹multiset (set_val (T v l r) v1) =
multiset l + {#v1#} + multiset r›
by (metis union_commute union_lcomm)
moreover
have "multiset (T v1 E (T v l r)) =
{#v1#} + multiset l + {#v#} + multiset r"
by (metis calculation monoid_add_class.add.left_neutral
multiset.simps(1) multiset.simps(2) union_commute union_lcomm)
moreover
have "{#v#} + multiset l + {#v1#} + multiset r =
{#v1#} + multiset l + {#v#} + multiset r"
by (metis union_commute union_lcomm)
ultimately
show ?thesis
by auto
qed
next
case ("5_1" v v1 l1 r1 v2 l2 r2)
thus ?case
proof(cases "v1 ≥ v2")
case True
thus ?thesis
proof(cases "v ≥ v1")
case True
thus ?thesis
using ‹v1 ≥ v2›
by auto
next
case False
hence "multiset (siftDown (T v (T v1 l1 r1) (T v2 l2 r2))) =
multiset l1 + {#v#} + multiset r1 + {#v1#} +
multiset (T v2 l2 r2)"
using ‹v1 ≥ v2› "5_1"(1)
by auto
moreover
have "multiset (T v (T v1 l1 r1) (T v2 l2 r2)) =
multiset l1 + {#v1#} + multiset r1 + {#v#} +
multiset(T v2 l2 r2)"
by auto
moreover
have "multiset l1 + {#v1#} + multiset r1 + {#v#} +
multiset(T v2 l2 r2) =
multiset l1 + {#v#} + multiset r1 + {#v1#} +
multiset (T v2 l2 r2)"
by (metis union_commute union_lcomm)
ultimately
show ?thesis
by auto
qed
next
case False
show ?thesis
proof(cases "v ≥ v2")
case True
thus ?thesis
using False
by auto
next
case False
hence "multiset (siftDown (T v (T v1 l1 r1) (T v2 l2 r2))) =
multiset (T v1 l1 r1) + {#v2#} +
multiset l2 + {#v#} + multiset r2"
using ‹¬ v1 ≥ v2› "5_1"(2)
by (simp add: ac_simps)
moreover
have
"multiset (T v (T v1 l1 r1) (T v2 l2 r2)) =
multiset (T v1 l1 r1) + {#v#} + multiset l2 +
{#v2#} + multiset r2"
by simp
moreover
have
"multiset (T v1 l1 r1) + {#v#} + multiset l2 + {#v2#} +
multiset r2 =
multiset (T v1 l1 r1) + {#v2#} + multiset l2 +
{#v#} + multiset r2"
by (metis union_commute union_lcomm)
ultimately
show ?thesis
by auto
qed
qed
next
case ("5_2" v v1 l1 r1 v2 l2 r2)
thus ?case
proof(cases "v1 ≥ v2")
case True
thus ?thesis
proof(cases "v ≥ v1")
case True
thus ?thesis
using ‹v1 ≥ v2›
by auto
next
case False
hence "multiset (siftDown (T v (T v1 l1 r1) (T v2 l2 r2))) =
multiset l1 + {#v#} + multiset r1 + {#v1#} +
multiset (T v2 l2 r2)"
using ‹v1 ≥ v2› "5_2"(1)
by auto
moreover
have "multiset (T v (T v1 l1 r1) (T v2 l2 r2)) =
multiset l1 + {#v1#} + multiset r1 +
{#v#} + multiset(T v2 l2 r2)"
by auto
moreover
have "multiset l1 + {#v1#} + multiset r1 + {#v#} +
multiset(T v2 l2 r2) =
multiset l1 + {#v#} + multiset r1 + {#v1#} +
multiset (T v2 l2 r2)"
by (metis union_commute union_lcomm)
ultimately
show ?thesis
by auto
qed
next
case False
show ?thesis
proof(cases "v ≥ v2")
case True
thus ?thesis
using False
by auto
next
case False
hence "multiset (siftDown (T v (T v1 l1 r1) (T v2 l2 r2))) =
multiset (T v1 l1 r1) + {#v2#} + multiset l2 + {#v#} +
multiset r2"
using ‹¬ v1 ≥ v2› "5_2"(2)
by (simp add: ac_simps)
moreover
have "multiset (T v (T v1 l1 r1) (T v2 l2 r2)) =
multiset (T v1 l1 r1) + {#v#} + multiset l2 + {#v2#} +
multiset r2"
by simp
moreover
have "multiset (T v1 l1 r1) + {#v#} + multiset l2 + {#v2#} +
multiset r2 =
multiset (T v1 l1 r1) + {#v2#} + multiset l2 + {#v#} +
multiset r2"
by (metis union_commute union_lcomm)
ultimately
show ?thesis
by auto
qed
qed
qed
lemma mset_list_tree:
"multiset (of_list_tree l) = mset l"
proof(induct l)
case Nil
thus ?case
by auto
next
case (Cons v tail)
hence "multiset (of_list_tree (v # tail)) = mset tail + {#v#}"
by auto
also have "... = mset (v # tail)"
by auto
finally show "multiset (of_list_tree (v # tail)) = mset (v # tail)"
by auto
qed
lemma multiset_heapify:
"multiset (heapify t) = multiset t"
proof(induct t)
case E
thus ?case
by auto
next
case (T v l r)
hence "multiset (heapify (T v l r)) = multiset l + {#v#} + multiset r"
using siftDown_multiset[of "T v (heapify l) (heapify r)"]
by auto
thus ?case
by auto
qed
lemma multiset_heapify_of_list_tree:
"multiset (heapify (of_list_tree l)) = mset l"
using multiset_heapify[of "of_list_tree l"]
using mset_list_tree[of l]
by auto
lemma removeLeaf_val_val:
assumes "snd (removeLeaf t) ≠ E" "t ≠ E"
shows "val t = val (snd (removeLeaf t))"
using assms
apply (induct t rule:removeLeaf.induct)
by auto
lemma removeLeaf_heap_is_heap:
assumes "is_heap t" "t ≠ E"
shows "is_heap (snd (removeLeaf t))"
using assms
proof(induct t rule:removeLeaf.induct)
case (1 v)
thus ?case
by auto
next
case (2 v v1 l1 r1)
have "is_heap (T v1 l1 r1)"
using 2(3)
by auto
hence "is_heap (snd (removeLeaf (T v1 l1 r1)))"
using 2(1)
by auto
let ?t = "(snd (removeLeaf (T v1 l1 r1)))"
show ?case
proof(cases "?t = E")
case True
thus ?thesis
by auto
next
case False
have "v ≥ v1"
using 2(3)
by auto
hence "v ≥ val ?t"
using False removeLeaf_val_val[of "T v1 l1 r1"]
by auto
hence "is_heap (T v (snd (removeLeaf (T v1 l1 r1))) E)"
using ‹is_heap (snd (removeLeaf (T v1 l1 r1)))›
by (metis Tree.exhaust is_heap.simps(2) is_heap.simps(4))
thus ?thesis
using 2
by auto
qed
next
case (3 v v1 l1 r1)
have "is_heap (T v1 l1 r1)"
using 3(3)
by auto
hence "is_heap (snd (removeLeaf (T v1 l1 r1)))"
using 3(1)
by auto
let ?t = "(snd (removeLeaf (T v1 l1 r1)))"
show ?case
proof(cases "?t = E")
case True
thus ?thesis
by auto
next
case False
have "v ≥ v1"
using 3(3)
by auto
hence "v ≥ val ?t"
using False removeLeaf_val_val[of "T v1 l1 r1"]
by auto
hence "is_heap (T v E (snd (removeLeaf (T v1 l1 r1))))"
using ‹is_heap (snd (removeLeaf (T v1 l1 r1)))›
by (metis False Tree.exhaust is_heap.simps(3))
thus ?thesis
using 3
by auto
qed
next
case ("4_1" v v1 l1 r1 v2 l2 r2)
have "is_heap (T v1 l1 r1)" "is_heap (T v2 l2 r2)" "v ≥ v1" "v ≥ v2"
using "4_1"(3)
by (simp add:is_heap.simps(5))+
hence "is_heap (snd (removeLeaf (T v1 l1 r1)))"
using "4_1"(1)
by auto
let ?t = "(snd (removeLeaf (T v1 l1 r1)))"
show ?case
proof(cases "?t = E")
case True
thus ?thesis
using ‹is_heap (T v2 l2 r2)› ‹v ≥ v2›
by auto
next
case False
then obtain v1' l1' r1' where "?t = T v1' l1' r1'"
by (metis Tree.exhaust)
hence "is_heap (T v1' l1' r1')"
using ‹is_heap (snd (removeLeaf (T v1 l1 r1)))›
by auto
have "v ≥ v1"
using "4_1"(3)
by auto
hence "v ≥ val ?t"
using False removeLeaf_val_val[of "T v1 l1 r1"]
by auto
hence "v ≥ v1'"
using ‹?t = T v1' l1' r1'›
by auto
hence "is_heap (T v (T v1' l1' r1') (T v2 l2 r2))"
using ‹is_heap (T v1' l1' r1')›
using ‹is_heap (T v2 l2 r2)› ‹v ≥ v2›
by (simp add: is_heap.simps(5))
thus ?thesis
using "4_1" ‹?t = T v1' l1' r1'›
by auto
qed
next
case ("4_2" v v1 l1 r1 v2 l2 r2)
have "is_heap (T v1 l1 r1)" "is_heap (T v2 l2 r2)" "v ≥ v1" "v ≥ v2"
using "4_2"(3)
by (simp add:is_heap.simps(5))+
hence "is_heap (snd (removeLeaf (T v1 l1 r1)))"
using "4_2"(1)
by auto
let ?t = "(snd (removeLeaf (T v1 l1 r1)))"
show ?case
proof(cases "?t = E")
case True
thus ?thesis
using ‹is_heap (T v2 l2 r2)› ‹v ≥ v2›
by auto
next
case False
then obtain v1' l1' r1' where "?t = T v1' l1' r1'"
by (metis Tree.exhaust)
hence "is_heap (T v1' l1' r1')"
using ‹is_heap (snd (removeLeaf (T v1 l1 r1)))›
by auto
have "v ≥ v1"
using "4_2"(3)
by auto
hence "v ≥ val ?t"
using False removeLeaf_val_val[of "T v1 l1 r1"]
by auto
hence "v ≥ v1'"
using ‹?t = T v1' l1' r1'›
by auto
hence "is_heap (T v (T v1' l1' r1') (T v2 l2 r2))"
using ‹is_heap (T v1' l1' r1')›
using ‹is_heap (T v2 l2 r2)› ‹v ≥ v2›
by (simp add: is_heap.simps(5))
thus ?thesis
using "4_2" ‹?t = T v1' l1' r1'›
by auto
qed
next
case 5
thus ?case
by auto
qed
text‹Difined functions satisfy conditions of locale {\em Collection} and thus represent
interpretation of this locale.›
interpretation HS: Collection "E" hs_is_empty hs_of_list multiset
proof
fix t
assume "hs_is_empty t"
thus "t = E"
by auto
next
show "hs_is_empty E"
by auto
next
show "multiset E = {#}"
by auto
next
fix l
show "multiset (hs_of_list l) = mset l"
unfolding hs_of_list_def
using multiset_heapify_of_list_tree[of l]
by auto
qed
lemma removeLeaf_multiset:
assumes "(v', t') = removeLeaf t" "t ≠ E"
shows "{#v'#} + multiset t' = multiset t"
using assms
proof(induct t arbitrary: v' t' rule:removeLeaf.induct)
case 1
thus ?case
by auto
next
case (2 v v1 l1 r1)
have "t' = T v (snd (removeLeaf (T v1 l1 r1))) E"
using 2(3)
by auto
have "v' = fst (removeLeaf (T v1 l1 r1))"
using 2(3)
by auto
hence "{#v'#} + multiset t' =
{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) +
{#v#}"
using ‹t' = T v (snd (removeLeaf (T v1 l1 r1))) E›
by (simp add: ac_simps)
have "{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) =
multiset (T v1 l1 r1)"
using 2(1)
by auto
hence "{#v'#} + multiset t' = multiset (T v1 l1 r1) + {#v#}"
using ‹{#v'#} + multiset t' =
{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) + {#v#}›
by auto
thus ?case
by auto
next
case (3 v v1 l1 r1)
have "t' = T v E (snd (removeLeaf (T v1 l1 r1)))"
using 3(3)
by auto
have "v' = fst (removeLeaf (T v1 l1 r1))"
using 3(3)
by auto
hence "{#v'#} + multiset t' =
{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) +
{#v#}"
using ‹t' = T v E (snd (removeLeaf (T v1 l1 r1)))›
by (simp add: ac_simps)
have "{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) =
multiset (T v1 l1 r1)"
using 3(1)
by auto
hence "{#v'#} + multiset t' = multiset (T v1 l1 r1) + {#v#}"
using ‹{#v'#} + multiset t' =
{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) + {#v#}›
by auto
thus ?case
by (metis monoid_add_class.add.right_neutral
multiset.simps(1) multiset.simps(2) union_commute)
next
case ("4_1" v v1 l1 r1 v2 l2 r2)
have "t' = T v (snd (removeLeaf (T v1 l1 r1))) (T v2 l2 r2)"
using "4_1"(3)
by auto
have "v' = fst (removeLeaf (T v1 l1 r1))"
using "4_1"(3)
by auto
hence "{#v'#} + multiset t' =
{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) +
{#v#} + multiset (T v2 l2 r2)"
using ‹t' = T v (snd (removeLeaf (T v1 l1 r1))) (T v2 l2 r2)›
by (metis multiset.simps(2) union_assoc)
have "{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) =
multiset (T v1 l1 r1)"
using "4_1"(1)
by auto
hence "{#v'#} + multiset t' =
multiset (T v1 l1 r1) + {#v#} + multiset (T v2 l2 r2)"
using ‹{#v'#} + multiset t' =
{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) +
{#v#} + multiset (T v2 l2 r2)›
by auto
thus ?case
by auto
next
case ("4_2" v v1 l1 r1 v2 l2 r2)
have "t' = T v (snd (removeLeaf (T v1 l1 r1))) (T v2 l2 r2)"
using "4_2"(3)
by auto
have "v' = fst (removeLeaf (T v1 l1 r1))"
using "4_2"(3)
by auto
hence "{#v'#} + multiset t' =
{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) +
{#v#} + multiset (T v2 l2 r2)"
using ‹t' = T v (snd (removeLeaf (T v1 l1 r1))) (T v2 l2 r2)›
by (metis multiset.simps(2) union_assoc)
have "{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) =
multiset (T v1 l1 r1)"
using "4_2"(1)
by auto
hence "{#v'#} + multiset t' =
multiset (T v1 l1 r1) + {#v#} + multiset (T v2 l2 r2)"
using ‹{#v'#} + multiset t' =
{#fst (removeLeaf (T v1 l1 r1))#} +
multiset (snd (removeLeaf (T v1 l1 r1))) +
{#v#} + multiset (T v2 l2 r2)›
by auto
thus ?case
by auto
next
case 5
thus ?case
by auto
qed
lemma set_val_multiset:
assumes "t ≠ E"
shows "multiset (set_val t v') + {#val t#} = {#v'#} + multiset t"
proof-
obtain v l r where "t = T v l r"
using assms
by (metis Tree.exhaust)
hence "multiset (set_val t v') + {#val t#} =
multiset l + {#v'#} + multiset r + {#v#}"
by auto
have "{#v'#} + multiset t =
{#v'#} + multiset l + {#v#} + multiset r"
using ‹t = T v l r›
by (metis multiset.simps(2) union_assoc)
have "{#v'#} + multiset l + {#v#} + multiset r =
multiset l + {#v'#} + multiset r + {#v#}"
by (metis union_commute union_lcomm)
thus ?thesis
using ‹multiset (set_val t v') + {#val t#} =
multiset l + {#v'#} + multiset r + {#v#}›
using ‹{#v'#} + multiset t =
{#v'#} + multiset l + {#v#} + multiset r›
by auto
qed
lemma hs_remove_max_multiset:
assumes "(m, t') = hs_remove_max t" "t ≠ E"
shows "{#m#} + multiset t' = multiset t"
proof-
let ?v1 = "fst (removeLeaf t)"
let ?t1 = "snd (removeLeaf t)"
show ?thesis
proof(cases "?t1 = E")
case True
hence "{#m#} + multiset t' = {#m#}"
using assms
unfolding hs_remove_max_def
by auto
have "?v1 = val t"
using True assms(2)
apply (induct t rule:removeLeaf.induct)
by auto
hence "?v1 = m"
using assms(1) True
unfolding hs_remove_max_def
by auto
hence "multiset t = {#m#}"
using removeLeaf_multiset[of ?v1 ?t1 t] True assms(2)
by (metis empty_neutral(2) multiset.simps(1) prod.collapse)
thus ?thesis
using ‹{#m#} + multiset t' = {#m#}›
by auto
next
case False
hence "t' = siftDown (set_val ?t1 ?v1)"
using assms(1)
by (auto simp add: hs_remove_max_def) (metis prod.inject)
hence "multiset t' + {#val ?t1#} = multiset t"
using siftDown_multiset[of "set_val ?t1 ?v1"]
using removeLeaf_multiset[of ?v1 ?t1 t] assms(2)
using set_val_multiset[of ?t1 ?v1] False
by auto
have "val ?t1 = val t"
using False assms(2)
apply (induct t rule:removeLeaf.induct)
by auto
have "val t = m"
using assms(1) False
using ‹t' = siftDown (set_val ?t1 ?v1)›
unfolding hs_remove_max_def
by (metis (full_types) fst_conv removeLeaf.simps(1))
hence "val ?t1 = m"
using ‹val ?t1 = val t›
by auto
hence "multiset t' + {#m#} = multiset t"
using ‹multiset t' + {#val ?t1#} = multiset t›
by metis
thus ?thesis
by (metis union_commute)
qed
qed
text‹Difined functions satisfy conditions of locale {\em Heap} and thus represent
interpretation of this locale.›
interpretation Heap "E" hs_is_empty hs_of_list multiset id hs_remove_max
proof
fix t
show "multiset t = multiset (id t)"
by auto
next
fix t
show " is_heap (id (hs_of_list t))"
unfolding hs_of_list_def
using heapify_heap_is_heap[of "of_list_tree t"]
by auto
next
fix t
show "(id t = E) = hs_is_empty t"
by auto
next
fix t m t'
assume "¬ hs_is_empty t" "(m, t') = hs_remove_max t"
thus "add_mset m (multiset t') = multiset t"
using hs_remove_max_multiset[of m t' t]
by auto
next
fix t v' t'
assume "¬ hs_is_empty t" "is_heap (id t)" "(v', t') = hs_remove_max t"
let ?v1 = "fst (removeLeaf t)"
let ?t1 = "snd (removeLeaf t)"
have "is_heap ?t1"
using ‹¬ hs_is_empty t› ‹is_heap (id t)›
using removeLeaf_heap_is_heap[of t]
by auto
show "is_heap (id t')"
proof(cases "?t1 = E")
case True
hence "t' = E"
using ‹(v', t') = hs_remove_max t›
unfolding hs_remove_max_def
by auto
thus ?thesis
by auto
next
case False
then obtain v_t1 l_t1 r_t1 where "?t1 = T v_t1 l_t1 r_t1"
by (metis Tree.exhaust)
hence "is_heap l_t1" "is_heap r_t1"
using ‹is_heap ?t1›
by (auto, metis (full_types) Tree.exhaust
is_heap.simps(1) is_heap.simps(4) is_heap.simps(5))
(metis (full_types) Tree.exhaust
is_heap.simps(1) is_heap.simps(3) is_heap.simps(5))
have "set_val ?t1 ?v1 = T ?v1 l_t1 r_t1"
using ‹?t1 = T v_t1 l_t1 r_t1›
by auto
hence "is_heap (siftDown (set_val ?t1 ?v1))"
using ‹is_heap l_t1› ‹is_heap r_t1›
using siftDown_heap_is_heap[of l_t1 r_t1 "set_val ?t1 ?v1" ?v1]
by auto
have "t' = siftDown (set_val ?t1 ?v1)"
using ‹(v', t') = hs_remove_max t› False
by (auto simp add: hs_remove_max_def) (metis prod.inject)
thus ?thesis
using ‹is_heap (siftDown (set_val ?t1 ?v1))›
by auto
qed
next
fix t m t'
let ?t1 = "snd (removeLeaf t)"
assume "¬ hs_is_empty t" "(m, t') = hs_remove_max t"
hence "m = val t"
apply (simp add: hs_remove_max_def)
apply (cases "?t1 = E")
by (auto, metis prod.inject)
thus "m = val (id t)"
by auto
qed
end