Theory Partial_Order_Reduction.List_Prefixes
section ‹List Prefixes›
theory List_Prefixes
imports "HOL-Library.Prefix_Order"
begin
lemmas [intro] = prefixI strict_prefixI[folded less_eq_list_def]
lemmas [elim] = prefixE strict_prefixE[folded less_eq_list_def]
lemmas [intro?] = take_is_prefix[folded less_eq_list_def]
hide_const (open) Sublist.prefix Sublist.suffix
lemma prefix_finI_item[intro!]:
assumes "a = b" "u ≤ v"
shows "a # u ≤ b # v"
using assms by force
lemma prefix_finE_item[elim!]:
assumes "a # u ≤ b # v"
obtains "a = b" "u ≤ v"
using assms by force
lemma prefix_fin_append[intro]: "u ≤ u @ v" by auto
lemma pprefix_fin_length[dest]:
assumes "u < v"
shows "length u < length v"
proof -
obtain a w where 1: "v = u @ a # w" using assms by rule
show ?thesis unfolding 1 by simp
qed
end