Theory DFS_Framework.Tailrec_Impl
section ‹Tail-Recursive Implementation›
theory Tailrec_Impl
imports General_DFS_Structure
begin
locale tailrec_impl_defs =
graph_defs G + gen_dfs_defs gds V0
for G :: "('v, 'more) graph_rec_scheme"
and gds :: "('v,'s)gen_dfs_struct"
begin
definition [DFS_code_unfold]: "tr_impl_while_body ≡ λs. do {
(u,Vs,s) ← gds_get_pending gds s;
case Vs of
None ⇒ gds_finish gds u s
| Some v ⇒ do {
if gds_is_discovered gds v s then do {
if gds_is_finished gds v s then
gds_cross_edge gds u v s
else
gds_back_edge gds u v s
} else
gds_discover gds u v s
}
}"
definition tailrec_implT where [DFS_code_unfold]:
"tailrec_implT ≡ do {
s ← gds_init gds;
FOREACHci
(λit s.
gen_rwof s
∧ (¬gds_is_break gds s ⟶ gds_is_empty_stack gds s )
∧ V0-it ⊆ gen_discovered s)
V0
(Not o gds_is_break gds)
(λv0 s. do {
let s0 = s;
if gds_is_discovered gds v0 s then
RETURN s
else do {
s ← gds_new_root gds v0 s;
WHILEIT
(λs. gen_rwof s ∧ insert v0 (gen_discovered s0) ⊆ gen_discovered s)
(λs. ¬gds_is_break gds s ∧ ¬gds_is_empty_stack gds s)
tr_impl_while_body s
}
}) s
}"
definition tailrec_impl where [DFS_code_unfold]:
"tailrec_impl ≡ do {
s ← gds_init gds;
FOREACHci
(λit s.
gen_rwof s
∧ (¬gds_is_break gds s ⟶ gds_is_empty_stack gds s )
∧ V0-it ⊆ gen_discovered s)
V0
(Not o gds_is_break gds)
(λv0 s. do {
let s0 = s;
if gds_is_discovered gds v0 s then
RETURN s
else do {
s ← gds_new_root gds v0 s;
WHILEI
(λs. gen_rwof s ∧ insert v0 (gen_discovered s0) ⊆ gen_discovered s)
(λs. ¬gds_is_break gds s ∧ ¬gds_is_empty_stack gds s)
(λs. do {
(u,Vs,s) ← gds_get_pending gds s;
case Vs of
None ⇒ gds_finish gds u s
| Some v ⇒ do {
if gds_is_discovered gds v s then do {
if gds_is_finished gds v s then
gds_cross_edge gds u v s
else
gds_back_edge gds u v s
} else
gds_discover gds u v s
}
}) s
}
}) s
}"
end
text ‹ Implementation of general DFS with outer foreach-loop ›
locale tailrec_impl =
fb_graph G + gen_dfs gds V0 + tailrec_impl_defs G gds
for G :: "('v, 'more) graph_rec_scheme"
and gds :: "('v,'s)gen_dfs_struct"
+
assumes init_empty_stack:
"gds_init gds ≤⇩n SPEC (gds_is_empty_stack gds)"
assumes new_root_discovered:
"⟦pre_new_root v0 s⟧
⟹ gds_new_root gds v0 s ≤⇩n SPEC (λs'.
insert v0 (gen_discovered s) ⊆ gen_discovered s')"
assumes get_pending_incr:
"⟦pre_get_pending s⟧ ⟹ gds_get_pending gds s ≤⇩n SPEC (λ(_,_,s').
gen_discovered s ⊆ gen_discovered s'
)"
assumes finish_incr: "⟦pre_finish u s0 s⟧
⟹ gds_finish gds u s ≤⇩n SPEC (λs'.
gen_discovered s ⊆ gen_discovered s')"
assumes cross_edge_incr: "pre_cross_edge u v s0 s
⟹ gds_cross_edge gds u v s ≤⇩n SPEC (λs'.
gen_discovered s ⊆ gen_discovered s')"
assumes back_edge_incr: "pre_back_edge u v s0 s
⟹ gds_back_edge gds u v s ≤⇩n SPEC (λs'.
gen_discovered s ⊆ gen_discovered s')"
assumes discover_incr: "pre_discover u v s0 s
⟹ gds_discover gds u v s ≤⇩n SPEC (λs'.
gen_discovered s ⊆ gen_discovered s')"
begin
context
assumes nofail:
"nofail (gds_init gds ⤜ WHILE gen_cond gen_step)"
begin
lemma gds_init_refine: "gds_init gds
≤ SPEC (λs. gen_rwof s ∧ gds_is_empty_stack gds s)"
apply (rule SPEC_rule_conj_leofI1)
apply (rule rwof_init[OF nofail])
apply (rule init_empty_stack)
done
lemma gds_new_root_refine:
assumes PNR: "pre_new_root v0 s"
shows "gds_new_root gds v0 s
≤ SPEC (λs'. gen_rwof s'
∧ insert v0 (gen_discovered s) ⊆ gen_discovered s' )"
apply (rule SPEC_rule_conj_leofI1)
apply (rule order_trans[OF _ rwof_step[OF nofail]])
using PNR apply (unfold gen_step_def gen_cond_def pre_new_root_def) [3]
apply (simp add: pw_le_iff refine_pw_simps, blast)
apply simp
apply blast
apply (rule new_root_discovered[OF PNR])
done
lemma get_pending_nofail:
assumes A: "pre_get_pending s"
shows "nofail (gds_get_pending gds s)"
proof -
from A[unfolded pre_get_pending_def] have
RWOF: "gen_rwof s" and
C: "¬ gds_is_empty_stack gds s" "¬ gds_is_break gds s"
by auto
from C have COND: "gen_cond s" unfolding gen_cond_def by auto
from rwof_step[OF nofail RWOF COND]
have "gen_step s ≤ SPEC gen_rwof" .
hence "nofail (gen_step s)" by (simp add: pw_le_iff)
with C show ?thesis unfolding gen_step_def by (simp add: refine_pw_simps)
qed
lemma gds_get_pending_refine:
assumes PRE: "pre_get_pending s"
shows "gds_get_pending gds s ≤ SPEC (λ(u,Vs,s').
post_get_pending u Vs s s'
∧ gen_discovered s ⊆ gen_discovered s')"
proof -
have "gds_get_pending gds s ≤ SPEC (λ(u,Vs,s'). post_get_pending u Vs s s')"
unfolding post_get_pending_def
apply (simp add: PRE)
using get_pending_nofail[OF PRE]
apply (simp add: pw_le_iff)
done
moreover note get_pending_incr[OF PRE]
ultimately show ?thesis by (simp add: pw_le_iff pw_leof_iff)
qed
lemma gds_finish_refine:
assumes PRE: "pre_finish u s0 s"
shows "gds_finish gds u s ≤ SPEC (λs'. gen_rwof s'
∧ gen_discovered s ⊆ gen_discovered s')"
apply (rule SPEC_rule_conj_leofI1)
apply (rule order_trans[OF _ rwof_step[OF nofail]])
using PRE
apply (unfold gen_step_def gen_cond_def pre_finish_def
post_get_pending_def pre_get_pending_def) [3]
apply (simp add: pw_le_iff refine_pw_simps split: option.split, blast)
apply simp
apply blast
apply (rule finish_incr[OF PRE])
done
lemma gds_cross_edge_refine:
assumes PRE: "pre_cross_edge u v s0 s"
shows "gds_cross_edge gds u v s ≤ SPEC (λs'. gen_rwof s'
∧ gen_discovered s ⊆ gen_discovered s')"
apply (rule SPEC_rule_conj_leofI1)
apply (rule order_trans[OF _ rwof_step[OF nofail]])
using PRE
apply (unfold gen_step_def gen_cond_def pre_cross_edge_def
post_get_pending_def pre_get_pending_def) [3]
apply (simp add: pw_le_iff refine_pw_simps split: option.split, blast)
apply simp
apply blast
apply (rule cross_edge_incr[OF PRE])
done
lemma gds_back_edge_refine:
assumes PRE: "pre_back_edge u v s0 s"
shows "gds_back_edge gds u v s ≤ SPEC (λs'. gen_rwof s'
∧ gen_discovered s ⊆ gen_discovered s')"
apply (rule SPEC_rule_conj_leofI1)
apply (rule order_trans[OF _ rwof_step[OF nofail]])
using PRE
apply (unfold gen_step_def gen_cond_def pre_back_edge_def
post_get_pending_def pre_get_pending_def) [3]
apply (simp add: pw_le_iff refine_pw_simps split: option.split, blast)
apply simp
apply blast
apply (rule back_edge_incr[OF PRE])
done
lemma gds_discover_refine:
assumes PRE: "pre_discover u v s0 s"
shows "gds_discover gds u v s ≤ SPEC (λs'. gen_rwof s'
∧ gen_discovered s ⊆ gen_discovered s')"
apply (rule SPEC_rule_conj_leofI1)
apply (rule order_trans[OF _ rwof_step[OF nofail]])
using PRE
apply (unfold gen_step_def gen_cond_def pre_discover_def
post_get_pending_def pre_get_pending_def) [3]
apply (simp add: pw_le_iff refine_pw_simps split: option.split, blast)
apply simp
apply blast
apply (rule discover_incr[OF PRE])
done
end
lemma gen_step_disc_incr:
assumes "nofail gen_dfs"
assumes "gen_rwof s" "insert v0 (gen_discovered s0) ⊆ gen_discovered s"
assumes "¬gds_is_break gds s" "¬gds_is_empty_stack gds s"
shows "gen_step s ≤ SPEC (λs. insert v0 (gen_discovered s0) ⊆ gen_discovered s)"
using assms
apply (simp only: gen_step_def gen_dfs_def)
apply (refine_rcg refine_vcg
order_trans[OF gds_init_refine]
order_trans[OF gds_new_root_refine]
order_trans[OF gds_get_pending_refine]
order_trans[OF gds_finish_refine]
order_trans[OF gds_cross_edge_refine]
order_trans[OF gds_back_edge_refine]
order_trans[OF gds_discover_refine]
)
apply (auto
simp: it_step_insert_iff gen_cond_def
pre_new_root_def pre_get_pending_def pre_finish_def
pre_cross_edge_def pre_back_edge_def pre_discover_def)
done
theorem tailrec_impl: "tailrec_impl ≤ gen_dfs"
unfolding gen_dfs_def
apply (rule WHILE_refine_rwof)
unfolding tailrec_impl_def
apply (refine_rcg refine_vcg
order_trans[OF gds_init_refine]
order_trans[OF gds_new_root_refine]
order_trans[OF gds_get_pending_refine]
order_trans[OF gds_finish_refine]
order_trans[OF gds_cross_edge_refine]
order_trans[OF gds_back_edge_refine]
order_trans[OF gds_discover_refine]
)
apply (auto
simp: it_step_insert_iff gen_cond_def
pre_new_root_def pre_get_pending_def pre_finish_def
pre_cross_edge_def pre_back_edge_def pre_discover_def)
done
lemma tr_impl_while_body_gen_step:
assumes [simp]: "¬gds_is_empty_stack gds s"
shows "tr_impl_while_body s ≤ gen_step s"
unfolding tr_impl_while_body_def gen_step_def
by simp
lemma tailrecT_impl: "tailrec_implT ≤ gen_dfsT"
proof (rule le_nofailI)
let ?V = "rwof_rel (gds_init gds) gen_cond gen_step"
assume NF: "nofail gen_dfsT"
from nofail_WHILEIT_wf_rel[of "gds_init gds" "λ_. True" gen_cond gen_step]
and this[unfolded gen_dfsT_def WHILET_def]
have WF: "wf (?V¯)" by simp
from NF have NF': "nofail gen_dfs" using gen_dfs_le_gen_dfsT
by (auto simp: pw_le_iff)
from rwof_rel_spec[of "gds_init gds" gen_cond gen_step] have
"⋀s. ⟦gen_rwof s; gen_cond s⟧ ⟹ gen_step s ≤⇩n SPEC (λs'. (s,s')∈?V)"
.
hence
aux: "⋀s. ⟦gen_rwof s; gen_cond s⟧ ⟹ gen_step s ≤ SPEC (λs'. (s,s')∈?V)"
apply (rule leofD[rotated])
apply assumption
apply assumption
using NF[unfolded gen_dfsT_def]
by (drule (1) WHILET_nofail_imp_rwof_nofail)
show ?thesis
apply (rule order_trans[OF _ gen_dfs_le_gen_dfsT])
apply (rule order_trans[OF _ tailrec_impl])
unfolding tailrec_implT_def tailrec_impl_def
unfolding tr_impl_while_body_def[symmetric]
apply (rule refine_IdD)
apply (refine_rcg bind_refine' inj_on_id)
apply refine_dref_type
apply simp_all
apply (subst WHILEIT_eq_WHILEI_tproof[where V="?V¯"])
apply (rule WF; fail)
subgoal
apply clarsimp
apply (rule order_trans[OF tr_impl_while_body_gen_step], assumption)
apply (rule aux, assumption, (simp add: gen_cond_def; fail))
done
apply (simp; fail)
done
qed
end
end