Theory Relation_Algebra_Direct_Products

(* Title:      Relation Algebra
   Author:     Alasdair Armstrong, Simon Foster, Georg Struth, Tjark Weber
   Maintainer: Georg Struth <g.struth at sheffield.ac.uk>
               Tjark Weber <tjark.weber at it.uu.se>
*)

section ‹Direct Products›

theory Relation_Algebra_Direct_Products
  imports Relation_Algebra_Functions
begin

text ‹This section uses the definition of direct products from Schmidt and
Str\"ohlein's book to prove the well known universal property.›

context relation_algebra
begin

definition is_direct_product :: "'a  'a  bool"
  where "is_direct_product x y  x ; x = 1'  y ; y = 1'  x ; x  y ; y = 1'  x ; y = 1"

text ‹We collect some basic properties.›

lemma dp_p_fun1: "is_direct_product x y  is_p_fun x"
by (metis is_direct_product_def eq_refl is_p_fun_def)

lemma dp_sur1: "is_direct_product x y  is_sur x"
by (metis is_direct_product_def eq_refl is_sur_def)

lemma dp_total1: "is_direct_product x y  is_total x"
by (metis is_direct_product_def inf_le1 is_total_def)

lemma dp_map1: "is_direct_product x y  is_map x"
by (metis dp_p_fun1 dp_total1 is_map_def)

lemma dp_p_fun2: "is_direct_product x y  is_p_fun y"
by (metis is_direct_product_def eq_refl is_p_fun_def)

lemma dp_sur2: "is_direct_product x y  is_sur y"
by (metis is_direct_product_def eq_refl is_sur_def)

lemma dp_total2: "is_direct_product x y  is_total y"
by (metis is_direct_product_def inf_le2 is_total_def)

lemma dp_map2: "is_direct_product x y  is_map y"
by (metis dp_p_fun2 dp_total2 is_map_def)

text ‹Next we prove four auxiliary lemmas.›

lemma dp_aux1 [simp]:
  assumes "is_p_fun z"
    and "is_total w"
    and "x ; z = 1"
  shows "(w ; x  y ; z) ; z = y"
by (metis assms inf_top_left mult.assoc ss_422iii total_one inf.commute inf_top_right)

lemma dp_aux2 [simp]:
  assumes "is_p_fun z"
    and "is_total w"
    and "z ; x = 1"
  shows "(w ; x  y ; z) ; z = y"
by (metis assms conv_contrav conv_invol conv_one inf_top_left mult.assoc ss_422iii total_one)

lemma dp_aux3 [simp]:
  assumes "is_p_fun z"
    and "is_total w"
    and "x ; z = 1"
  shows "(y ; z  w ; x) ; z = y"
by (metis assms dp_aux1 inf.commute)

lemma dp_aux4 [simp]:
  assumes "is_p_fun z"
    and "is_total w"
    and "z ; x = 1"
  shows "( y ; z  w ; x) ; z = y"
by (metis assms dp_aux2 inf.commute)

text ‹Next we define a function which is an isomorphism on projections.›

definition Phi :: "'a  'a  'a  'a  'a" (Φ)
  where "Φ  (λw x y z. w ; y  x ; z)"

lemma Phi_conv: "(Φ w x y z) = y ; w  z ; x"
by (simp add: Phi_def)

text ‹We prove that @{const Phi} is an isomorphism with respect to the
projections.›

lemma mono_dp_1:
  assumes "is_direct_product w x"
    and "is_direct_product y z"
  shows "Φ w x y z ; y = w"
by (metis assms dp_aux4 is_direct_product_def dp_p_fun1 dp_total2 Phi_def)

lemma mono_dp_2:
  assumes "is_direct_product w x"
    and "is_direct_product y z"
  shows "Φ w x y z ; z = x"
by (metis assms dp_aux1 is_direct_product_def dp_p_fun2 dp_total1 Phi_def)

text ‹We now show that @{const Phi} is an injective function.›

lemma Phi_map:
  assumes "is_direct_product w x"
    and "is_direct_product y z"
  shows "is_map (Φ w x y z)"
proof -
  have "Φ w x y z ; -(1') = Φ w x y z ; -(y ; y  z ; z)"
    by (metis assms(2) is_direct_product_def)
  also have "... = Φ w x y z ; y ; -(y) + Φ w x y z ; z ; -(z)"
   by (metis compl_inf assms(2) ss43iii dp_map1 dp_map2 mult.assoc distrib_left)
 also have "... = w ; -(y) + x ; -(z)"
   by (metis assms mono_dp_1 mono_dp_2)
 also have "... = -(w ; y) + -(x ; z)"
   by (metis assms(1) ss43iii dp_map1 dp_map2)
 also have "... = -(Φ w x y z)"
   by (metis compl_inf Phi_def)
 finally show ?thesis
   by (metis is_maprop)
qed

lemma Phi_inj:
  assumes "is_direct_product w x"
    and "is_direct_product y z"
  shows "is_inj (Φ w x y z)"
by (metis Phi_def Phi_conv Phi_map assms inj_p_fun is_map_def)

text ‹Next we show that the converse of @{const Phi} is an injective
function.›

lemma Phi_conv_map:
  assumes "is_direct_product w x"
    and "is_direct_product y z"
  shows "is_map ((Φ w x y z))"
by (metis Phi_conv Phi_def Phi_map assms)

lemma Phi_conv_inj:
  assumes "is_direct_product w x"
    and "is_direct_product y z"
  shows "is_inj ((Φ w x y z))"
by (metis Phi_inj Phi_conv Phi_def assms)

lemma Phi_sur:
  assumes "is_direct_product w x"
  and "is_direct_product y z"
  shows "is_sur (Φ w x y z)"
by (metis assms Phi_conv Phi_def Phi_map is_map_def sur_total)

lemma Phi_conv_sur:
  assumes "is_direct_product w x"
    and "is_direct_product y z"
  shows "is_sur ((Φ w x y z))"
by (metis assms Phi_conv Phi_def Phi_sur)

lemma Phi_bij:
  assumes "is_direct_product w x"
    and "is_direct_product y z"
  shows "is_bij (Φ w x y z)"
by (metis assms Phi_inj Phi_map Phi_sur is_bij_def)

lemma Phi_conv_bij:
  assumes "is_direct_product w x"
    and "is_direct_product y z"
  shows "is_bij ((Φ w x y z))"
by (metis Phi_bij Phi_def Phi_conv assms)

text ‹Next we construct, for given functions~@{term f} and~@{term g}, a
function~@{term F} which makes the standard product diagram commute, and we
verify these commutation properties.›

definition F :: "'a  'a  'a  'a  'a"
  where "F  (λf x g y. f ; x  g ; y)"

lemma f_proj:
  assumes "is_direct_product x y"
  and "is_map g"
  shows "F f x g y ; x = f"
by (metis assms dp_aux4 F_def is_map_def is_direct_product_def dp_p_fun1)

lemma g_proj:
  assumes "is_direct_product x y"
  and "is_map f"
  shows "F f x g y ; y = g"
by (metis assms dp_aux1 F_def is_map_def is_direct_product_def dp_p_fun2)

text ‹Finally we show uniqueness of~@{const F}, hence universality of the
construction.›

lemma
  assumes "is_direct_product x y"
  and "is_map f"
  and "is_map g"
  and "is_map G"
  and "f = G ; x"
  and "g = G ; y"
  shows "G = F f x g y"
proof -
  have "F f x g y = G ; (x ; x)  G ; (y ; y)"
    by (metis assms(5) assms(6) F_def mult.assoc)
  also have " = G ; (x ; x  y ; y)"
    by (metis assms(4) map_distl)
  thus ?thesis
    by (metis assms(1) is_direct_product_def calculation mult.right_neutral)
qed

end (* relation_algebra *)

end