Theory AGTT
theory AGTT
imports GTT GTT_Transitive_Closure Pair_Automaton
begin
definition AGTT_union where
"AGTT_union π’β©1 π’β©2 β‘ (ta_union (fst π’β©1) (fst π’β©2),
ta_union (snd π’β©1) (snd π’β©2))"
abbreviation AGTT_union' where
"AGTT_union' π’β©1 π’β©2 β‘ AGTT_union (fmap_states_gtt Inl π’β©1) (fmap_states_gtt Inr π’β©2)"
lemma disj_gtt_states_disj_fst_ta_states:
assumes dist_st: "gtt_states π’β©1 |β©| gtt_states π’β©2 = {||}"
shows "π¬ (fst π’β©1) |β©| π¬ (fst π’β©2) = {||}"
using assms unfolding gtt_states_def by auto
lemma disj_gtt_states_disj_snd_ta_states:
assumes dist_st: "gtt_states π’β©1 |β©| gtt_states π’β©2 = {||}"
shows "π¬ (snd π’β©1) |β©| π¬ (snd π’β©2) = {||}"
using assms unfolding gtt_states_def by auto
lemma ta_der_not_contains_undefined_state:
assumes "q |β| π¬ T" and "ground t"
shows "q |β| ta_der T t"
using ground_ta_der_states[OF assms(2)] assms(1)
by blast
lemma AGTT_union_sound1:
assumes dist_st: "gtt_states π’β©1 |β©| gtt_states π’β©2 = {||}"
shows "agtt_lang (AGTT_union π’β©1 π’β©2) β agtt_lang π’β©1 βͺ agtt_lang π’β©2"
proof -
let ?TA_A = "ta_union (fst π’β©1) (fst π’β©2)"
let ?TA_B = "ta_union (snd π’β©1) (snd π’β©2)"
{fix s t assume ass: "(s, t) β agtt_lang (AGTT_union π’β©1 π’β©2)"
then obtain q where ls: "q |β| ta_der ?TA_A (term_of_gterm s)" and
rs: "q |β| ta_der ?TA_B (term_of_gterm t)"
by (auto simp add: AGTT_union_def agtt_lang_def gta_der_def)
then have "(s, t) β agtt_lang π’β©1 β¨ (s, t) β agtt_lang π’β©2"
proof (cases "q |β| gtt_states π’β©1")
case True
then have "q |β| gtt_states π’β©2" using dist_st
by blast
then have nt_fst_st: "q |β| π¬ (fst π’β©2)" and
nt_snd_state: "q |β| π¬ (snd π’β©2)" by (auto simp add: gtt_states_def)
from True show ?thesis
using ls rs
using ta_der_not_contains_undefined_state[OF nt_fst_st]
using ta_der_not_contains_undefined_state[OF nt_snd_state]
unfolding gtt_states_def agtt_lang_def gta_der_def
using ta_union_der_disj_states[OF disj_gtt_states_disj_fst_ta_states[OF dist_st]]
using ta_union_der_disj_states[OF disj_gtt_states_disj_snd_ta_states[OF dist_st]]
using ground_term_of_gterm by blast
next
case False
then have "q |β| gtt_states π’β©1" by (metis IntI dist_st emptyE)
then have nt_fst_st: "q |β| π¬ (fst π’β©1)" and
nt_snd_state: "q |β| π¬ (snd π’β©1)" by (auto simp add: gtt_states_def)
from False show ?thesis
using ls rs
using ta_der_not_contains_undefined_state[OF nt_fst_st]
using ta_der_not_contains_undefined_state[OF nt_snd_state]
unfolding gtt_states_def agtt_lang_def gta_der_def
using ta_union_der_disj_states[OF disj_gtt_states_disj_fst_ta_states[OF dist_st]]
using ta_union_der_disj_states[OF disj_gtt_states_disj_snd_ta_states[OF dist_st]]
using ground_term_of_gterm by blast
qed}
then show ?thesis by auto
qed
lemma AGTT_union_sound2:
shows "agtt_lang π’β©1 β agtt_lang (AGTT_union π’β©1 π’β©2)"
"agtt_lang π’β©2 β agtt_lang (AGTT_union π’β©1 π’β©2)"
unfolding agtt_lang_def gta_der_def AGTT_union_def
by auto (meson fin_mono ta_der_mono' ta_union_ta_subset)+
lemma AGTT_union_sound:
assumes dist_st: "gtt_states π’β©1 |β©| gtt_states π’β©2 = {||}"
shows "agtt_lang (AGTT_union π’β©1 π’β©2) = agtt_lang π’β©1 βͺ agtt_lang π’β©2"
using AGTT_union_sound1[OF assms] AGTT_union_sound2 by blast
lemma AGTT_union'_sound:
fixes π’β©1 :: "('q, 'f) gtt" and π’β©2 :: "('q, 'f) gtt"
shows "agtt_lang (AGTT_union' π’β©1 π’β©2) = agtt_lang π’β©1 βͺ agtt_lang π’β©2"
proof -
have map: "agtt_lang (AGTT_union' π’β©1 π’β©2) =
agtt_lang (fmap_states_gtt CInl π’β©1) βͺ agtt_lang (fmap_states_gtt CInr π’β©2)"
by (intro AGTT_union_sound) (auto simp add: agtt_lang_fmap_states_gtt)
then show ?thesis by (simp add: agtt_lang_fmap_states_gtt finj_CInl_CInr)
qed
subsection βΉAnchord gtt compositonβΊ
definition AGTT_comp :: "('q, 'f) gtt β ('q, 'f) gtt β ('q, 'f) gtt" where
"AGTT_comp π’β©1 π’β©2 = (let (π, β¬) = (fst π’β©1, snd π’β©2) in
(TA (rules π) (eps π |βͺ| (Ξβ©Ξ΅ (snd π’β©1) (fst π’β©2) |β©| (gtt_interface π’β©1 |Γ| gtt_interface π’β©2))),
TA (rules β¬) (eps β¬)))"
abbreviation AGTT_comp' where
"AGTT_comp' π’β©1 π’β©2 β‘ AGTT_comp (fmap_states_gtt Inl π’β©1) (fmap_states_gtt Inr π’β©2)"
lemma AGTT_comp_sound:
assumes "gtt_states π’β©1 |β©| gtt_states π’β©2 = {||}"
shows "agtt_lang (AGTT_comp π’β©1 π’β©2) = agtt_lang π’β©1 O agtt_lang π’β©2"
proof -
let ?Qβ©1 = "fId_on (gtt_interface π’β©1)" let ?Qβ©2 = "fId_on (gtt_interface π’β©2)"
have lan: "agtt_lang π’β©1 = pair_at_lang π’β©1 ?Qβ©1" "agtt_lang π’β©2 = pair_at_lang π’β©2 ?Qβ©2"
using pair_at_agtt[of π’β©1] pair_at_agtt[of π’β©2]
by auto
have "agtt_lang π’β©1 O agtt_lang π’β©2 = pair_at_lang (fst π’β©1, snd π’β©2) (Ξ_eps_pair π’β©1 ?Qβ©1 π’β©2 ?Qβ©2)"
using pair_comp_sound1 pair_comp_sound2
by (auto simp add: lan pair_comp_sound1 pair_comp_sound2 relcomp.simps)
moreover have "AGTT_comp π’β©1 π’β©2 = pair_at_to_agtt (fst π’β©1, snd π’β©2) (Ξ_eps_pair π’β©1 ?Qβ©1 π’β©2 ?Qβ©2)"
by (auto simp: AGTT_comp_def pair_at_to_agtt_def gtt_interface_def Ξβ©Ξ΅_def' Ξ_eps_pair_def)
ultimately show ?thesis using pair_at_agtt_conv[of "Ξ_eps_pair π’β©1 ?Qβ©1 π’β©2 ?Qβ©2" "(fst π’β©1, snd π’β©2)"]
using assms
by (auto simp: Ξ_eps_pair_def gtt_states_def gtt_interface_def)
qed
lemma AGTT_comp'_sound:
"agtt_lang (AGTT_comp' π’β©1 π’β©2) = agtt_lang π’β©1 O agtt_lang π’β©2"
using AGTT_comp_sound[of "fmap_states_gtt (Inl :: 'b β 'b + 'c) π’β©1"
"fmap_states_gtt (Inr :: 'c β 'b + 'c) π’β©2"]
by (auto simp add: agtt_lang_fmap_states_gtt disjoint_iff_not_equal agtt_lang_Inl_Inr_states_agtt)
subsection βΉAnchord gtt transitivityβΊ
definition AGTT_trancl :: "('q, 'f) gtt β ('q + 'q, 'f) gtt" where
"AGTT_trancl π’ = (let π = fmap_states_ta Inl (fst π’) in
(TA (rules π) (eps π |βͺ| map_prod CInl CInr |`| (Ξ_Atrans_gtt π’ (fId_on (gtt_interface π’)))),
TA (map_ta_rule CInr id |`| (rules (snd π’))) (map_both CInr |`| (eps (snd π’)))))"
lemma AGTT_trancl_sound:
shows "agtt_lang (AGTT_trancl π’) = (agtt_lang π’)β§+"
proof -
let ?P = "map_prod (fmap_states_ta CInl) (fmap_states_ta CInr) π’"
let ?Q = "fId_on (gtt_interface π’)" let ?Q' = "map_prod CInl CInr |`| ?Q"
have inv: "finj_on CInl (π¬ (fst π’))" "finj_on CInr (π¬ (snd π’))"
"?Q |β| π¬ (fst π’) |Γ| π¬ (snd π’)"
by (auto simp: gtt_interface_def finj_CInl_CInr)
have *: "fst |`| map_prod CInl CInr |`| Ξ_Atrans_gtt π’ (fId_on (gtt_interface π’)) |β| CInl |`| π¬ (fst π’)"
using fsubsetD[OF Ξ_Atrans_states_stable[OF inv(3)]]
by (auto simp add: gtt_interface_def)
from pair_at_lang_fun_states[OF inv]
have "agtt_lang π’ = pair_at_lang ?P ?Q'" using pair_at_agtt[of π’] by auto
moreover then have "(agtt_lang π’)β§+ = pair_at_lang ?P (Ξ_Atrans_gtt ?P ?Q')"
by (simp add: pair_trancl_sound)
moreover have "AGTT_trancl π’ = pair_at_to_agtt ?P (Ξ_Atrans_gtt ?P ?Q')"
using Ξ_Atrans_states_stable[OF inv(3)] Ξ_Atrans_map_prod[OF inv, symmetric]
using fId_on_frelcomp_id[OF *]
by (auto simp: AGTT_trancl_def pair_at_to_agtt_def gtt_interface_def Let_def fmap_states_ta_def)
(metis fmap_prod_fimageI fmap_states fmap_states_ta_def)
moreover have "gtt_interface (map_prod (fmap_states_ta CInl) (fmap_states_ta CInr) π’) = {||}"
by (auto simp: gtt_interface_def)
ultimately show ?thesis using pair_at_agtt_conv[of "Ξ_Atrans_gtt ?P ?Q'" ?P] Ξ_Atrans_states_stable[OF inv(3)]
unfolding Ξ_Atrans_map_prod[OF inv, symmetric]
by (simp add: fimage_mono gtt_interface_def map_prod_ftimes)
qed
subsection βΉAnchord gtt intersectionβΊ
definition AGTT_inter where
"AGTT_inter π’β©1 π’β©2 β‘ (prod_ta (fst π’β©1) (fst π’β©2),
prod_ta (snd π’β©1) (snd π’β©2))"
lemma AGTT_inter_sound:
"agtt_lang (AGTT_inter π’β©1 π’β©2) = agtt_lang π’β©1 β© agtt_lang π’β©2" (is "?Ls = ?Rs")
proof -
let ?TA_A = "prod_ta (fst π’β©1) (fst π’β©2)"
let ?TA_B = "prod_ta (snd π’β©1) (snd π’β©2)"
{fix s t assume ass: "(s, t) β agtt_lang (AGTT_inter π’β©1 π’β©2)"
then obtain q where ls: "q |β| ta_der ?TA_A (term_of_gterm s)" and
rs: "q |β| ta_der ?TA_B (term_of_gterm t)"
by (auto simp add: AGTT_inter_def agtt_lang_def gta_der_def)
then have "(s, t) β agtt_lang π’β©1 β§ (s, t) β agtt_lang π’β©2"
using prod_ta_der_to_π_β¬_der1[of q] prod_ta_der_to_π_β¬_der2[of q]
by (auto simp: agtt_lang_def gta_der_def) blast}
then have f: "?Ls β ?Rs" by auto
moreover have "?Rs β ?Ls" using π_β¬_der_to_prod_ta
by (fastforce simp: agtt_lang_def AGTT_inter_def gta_der_def)
ultimately show ?thesis by blast
qed
subsection βΉAnchord gtt trimingβΊ
abbreviation "trim_agtt β‘ trim_gtt"
lemma agtt_only_prod_lang:
"agtt_lang (gtt_only_prod π’) = agtt_lang π’" (is "?Ls = ?Rs")
proof -
let ?A = "fst π’" let ?B = "snd π’"
have "?Ls β ?Rs" unfolding agtt_lang_def gtt_only_prod_def
by (auto simp: Let_def gta_der_def dest: ta_der_ta_only_prod_ta_der)
moreover
{fix s t assume "(s, t) β ?Rs"
then obtain q where r: "q |β| ta_der (fst π’) (term_of_gterm s)" "q |β| ta_der (snd π’) (term_of_gterm t)"
by (auto simp: agtt_lang_def gta_der_def)
then have " q |β| gtt_interface π’" by (auto simp: gtt_interface_def)
then have "(s, t) β ?Ls" using r
by (auto simp: agtt_lang_def gta_der_def gtt_only_prod_def Let_def intro!: exI[of _ q] ta_der_only_prod ta_productive_setI)}
ultimately show ?thesis by auto
qed
lemma agtt_only_reach_lang:
"agtt_lang (gtt_only_reach π’) = agtt_lang π’"
unfolding agtt_lang_def gtt_only_reach_def
by (auto simp: gta_der_def simp flip: ta_der_gterm_only_reach)
lemma trim_agtt_lang [simp]:
"agtt_lang (trim_agtt G) = agtt_lang G"
unfolding trim_gtt_def comp_def agtt_only_prod_lang agtt_only_reach_lang ..
end