Theory Karatsuba.Time_Monad_Extended
theory Time_Monad_Extended
imports Root_Balanced_Tree.Time_Monad
begin
section "Some Automation for @{theory Root_Balanced_Tree.Time_Monad}"
text "A bit of automation for statements involving the @{const time} component."
lemma time_bind_tm: "time (s ⤜ f) = time s + time (f (val s))"
unfolding bind_tm_def
by (simp split: tm.splits)
lemma time_tick: "time (tick s) = 1"
by (simp add: tick_def)
lemmas tm_time_simps[simp] = time_bind_tm time_return time_tick if_distrib[of time]
lemma bind_tm_cong[fundef_cong]:
assumes "f1 = f2"
assumes "g1 (val f1) = g2 (val f2)"
shows "f1 ⤜ g1 = f2 ⤜ g2"
using assms unfolding bind_tm_def
by (auto split: tm.splits)
text "Introduce @{text val_simp} as named theorem. The idea is to collect simplification rules for
the @{const val} component that can be unfolded on their own."
named_theorems val_simp
declare val_simps[val_simp]
end