Theory Weaken_Bisimulation

(* 
   Title: Psi-calculi   
   Author/Maintainer: Jesper Bengtson (jebe@itu.dk), 2012
*)
theory Weaken_Bisimulation
  imports Weaken_Simulation Weaken_Stat_Imp
begin

context weak
begin

lemma weakenMonoCoinduct: "x y xa xb xc P Q Ψ.
                      x  y 
                      (Ψ  Q w<{(xc, xb, xa). x xc xb xa}> P) 
                     (Ψ  Q w<{(xb, xa, xc). y xb xa xc}> P)"
apply auto
apply(rule weakenSimMonotonic)
by(auto dest: le_funE)

lemma weakenMonoCoinduct2: "x y xa xb xc P Q Ψ.
                      x  y 
                      (Ψ  Q w<{(xc, xb, xa). x xc xb xa}> P) 
                     (Ψ  Q w<{(xb, xa, xc). y xb xa xc}> P)"
apply auto
apply(rule weakenStatImpMonotonic)
by(auto dest: le_funE)

coinductive_set weakenBisim :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set" 
where
  step: "Ψ  P w<weakenBisim> Q; Ψ  P w<weakenBisim> Q;
          Ψ'. (Ψ  Ψ',  P, Q)  weakenBisim; (Ψ, Q, P)  weakenBisim  (Ψ, P, Q)  weakenBisim"
monos weakenMonoCoinduct weakenMonoCoinduct2

abbreviation
  weakenBisimJudge (‹_  _ w _› [70, 70, 70] 65) where "Ψ  P w Q  (Ψ, P, Q)  weakenBisim"
abbreviation
  weakenBisimNilJudge (‹_ w _› [70, 70] 65) where "P w Q  𝟭  P w Q"

lemma weakenBisimCoinductAux[consumes 1]:
  fixes F :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes "(Ψ, P, Q)  X"
  and     "Ψ P Q. (Ψ, P, Q)  X  (Ψ  P w<(X  weakenBisim)> Q) 
                                    (Ψ  P w<(X  weakenBisim)> Q) 
                                    (Ψ'. (Ψ  Ψ', P, Q)  X  (Ψ  Ψ', P, Q)  weakenBisim) 
                                    ((Ψ, Q, P)  X  (Ψ, Q, P)  weakenBisim)"

  shows "(Ψ, P, Q)  weakenBisim"
proof -
  have "X  weakenBisim = {(Ψ, P, Q). (Ψ, P, Q)  X  (Ψ, P, Q)  weakenBisim}" by auto
  with assms show ?thesis
    by coinduct (simp add: rtrancl_def)
qed

lemma weakenBisimCoinduct[consumes 1, case_names cStatImp cSim cExt cSym]:
  fixes F :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes "(Ψ, P, Q)  X"
  and     "Ψ' R S. (Ψ', R, S)  X  Ψ'  R w<(X  weakenBisim)> S"
  and     "Ψ' R S. (Ψ', R, S)  X  Ψ'  R w<(X  weakenBisim)> S"
  and     "Ψ' R S Ψ''. (Ψ', R, S)  X  (Ψ'  Ψ'', R, S)  X  Ψ'  Ψ''  R w S"
  and     "Ψ' R S. (Ψ', R, S)  X  (Ψ', S, R)  X  Ψ'  S w R"

  shows "Ψ  P w Q"
proof -
  have "X  weakenBisim = {(Ψ, P, Q). (Ψ, P, Q)  X  (Ψ, P, Q)  weakenBisim}" by auto
  with assms show ?thesis
    by coinduct (simp add: rtrancl_def)
qed

lemma weakenBisimWeakCoinductAux[consumes 1]:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes "(Ψ, P, Q)  X"
  and     "Ψ P Q. (Ψ, P, Q)  X  Ψ  P w<X> Q 
                                     Ψ  P w<X> Q  (Ψ'. (Ψ  Ψ', P, Q)  X)  
                                    (Ψ, Q, P)  X" 

  shows "Ψ  P w Q"
using assms
by(coinduct rule: weakenBisimCoinductAux) (blast intro: weakenSimMonotonic weakenStatImpMonotonic)

lemma weakenBisimE:
  fixes P  :: "('a, 'b, 'c) psi"
  and   Q  :: "('a, 'b, 'c) psi"
  and   Ψ  :: 'b
  and   Ψ' :: 'b

  assumes "Ψ  P w Q"

  shows "Ψ  P w<weakenBisim> Q"
  and   "Ψ  P w<weakenBisim> Q"
  and   "Ψ  Ψ'  P w Q"
  and   "Ψ  Q w P"
using assms
by(auto intro: weakenBisim.cases simp add: rtrancl_def)

lemma weakenBisimWeakCoinduct[consumes 1, case_names cStatImp cSim cExt cSym]:
  fixes F :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes "(Ψ, P, Q)  X"
  and     "Ψ P Q. (Ψ, P, Q)  X  Ψ  P w<X> Q"
  and     "Ψ P Q. (Ψ, P, Q)  X  Ψ  P w<X> Q"
  and     "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and     "Ψ P Q. (Ψ, P, Q)  X  (Ψ, Q, P)  X"

  shows "(Ψ, P, Q)  weakenBisim"
proof -
  have "X  weakenBisim = {(Ψ, P, Q). (Ψ, P, Q)  X  (Ψ, P, Q)  weakenBisim}" by auto
  with assms show ?thesis
    by(coinduct rule: weakenBisimWeakCoinductAux) blast
qed

lemma weakenBisimEqWeakBisim[simp]: "weakenBisim = weakBisim"
proof auto
  fix Ψ P Q
  assume "Ψ  P w Q" thus "Ψ  P  Q"
  proof(coinduct rule: weakBisimWeakCoinduct)
    case(cStatImp Ψ P Q)
    from Ψ  P w Q have "Ψ  P w<weakenBisim> Q" by(rule weakenBisimE)
    thus ?case using weakenBisimE(3) by(rule weakenStatImpWeakStatImp)
  next
    case(cSim Ψ P Q)
    from Ψ  P w Q weakenBisimE
    show ?case by(rule weakenSimWeakSim)
  next
    case(cExt Ψ P Q Ψ')
    thus ?case by(rule weakenBisimE)
  next
    case(cSym Ψ P Q)
    thus ?case by(rule weakenBisimE)
  qed
next
  fix Ψ P Q
  assume "Ψ  P  Q" thus "Ψ  P w Q"
  proof(coinduct rule: weakenBisimWeakCoinduct)
    case(cStatImp Ψ P Q)
    from Ψ  P  Q have "Ψ  P ⪅<weakBisim> Q" by(rule weakBisimE)
    thus ?case using statEqWeakBisim by(rule weakStatImpWeakenStatImp)
  next
    case(cSim Ψ P Q)
    from Ψ  P  Q have "Ψ  P ↝<weakBisim> Q" by(rule weakBisimE)
    thus ?case using statEqWeakBisim by(rule weakSimWeakenSim)
  next
    case(cExt Ψ P Q Ψ')
    thus ?case by(rule weakBisimE)
  next
    case(cSym Ψ P Q)
    thus ?case by(rule weakBisimE)
  qed
qed

lemma weakenTransitiveWeakCoinduct[case_names cStatImp cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatImp: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P w<X> Q"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P w<({(Ψ, P, Q) | Ψ P Q. P' Q'. Ψ  P  P' 
                                                                        (Ψ, P', Q')  X 
                                                                        Ψ  Q'  Q})> Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X  (Ψ, Q, P)  X"

  shows "Ψ  P w Q"
proof -
  from p eqvt X have "Ψ  P  Q"
  proof(coinduct rule: weakTransitiveWeakCoinduct)
    case(cStatImp Ψ P Q)
    from (Ψ, P, Q)  X have "Ψ  P w<X> Q" by(rule rStatImp)
    thus ?case using rExt by(rule weakenStatImpWeakStatImp)
  next
    case(cSim Ψ P Q)
    let ?Y = "{(Ψ, P, Q) | Ψ P Q. P' Q'. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
    note (Ψ, P, Q)  X
    moreover note rStatImp rSim
    moreover have "Ψ P Q Ψ'. (Ψ, P, Q)  ?Y  (Ψ  Ψ', P, Q)  ?Y"
      by(blast dest: bisimE rExt)
    ultimately show ?case using rSym by(rule weakenSimWeakSim)
  next
    case(cExt Ψ P Q Ψ')
    thus ?case by(rule rExt) 
  next
    case(cSym Ψ P Q)
    thus ?case by(rule rSym)
  qed
  thus ?thesis by(simp add: weakenBisimEqWeakBisim)
qed

lemma weakenTransitiveCoinduct[case_names cStatImp cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatImp: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P w<(X  weakenBisim)> Q"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P w<({(Ψ, P, Q) | Ψ P Q. P' Q'. Ψ  P  P' 
                                                                        (Ψ, P', Q')  (X  weakenBisim) 
                                                                        Ψ  Q'  Q})> Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X  weakenBisim"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X  (Ψ, Q, P)  X  weakenBisim"

  shows "Ψ  P w Q"
proof -
  from p have "(Ψ, P, Q)  X  weakenBisim" by auto
  moreover from eqvt X have "eqvt(X  weakenBisim)" by auto
  ultimately show ?thesis
  proof(coinduct rule: weakenTransitiveWeakCoinduct)
    case(cStatImp Ψ P Q)
    thus ?case by(fastforce intro: rStatImp weakenBisimE(1) weakenStatImpMonotonic)
  next
    case(cSim Ψ P Q)
    thus ?case by(fastforce intro: rSim weakenBisimE(2) weakenSimMonotonic bisimReflexive)
  next
    case(cExt Ψ P Q Ψ')
    thus ?case by(blast dest: weakenBisimE rExt) 
  next
    case(cSym Ψ P Q)
    thus ?case by(blast dest: weakenBisimE rSym)
  qed
qed

end

end