Theory Weak_Congruence

(* 
   Title: Psi-calculi   
   Author/Maintainer: Jesper Bengtson (jebe@itu.dk), 2012
*)
theory Weak_Congruence
  imports Weak_Cong_Struct_Cong Bisim_Subst
begin

context env begin

definition weakCongruence :: "('a, 'b, 'c) psi  ('a, 'b, 'c) psi  bool" (‹_ c _› [70, 70] 65)
where 
  "P c Q  Ψ σ. wellFormedSubst σ  Ψ  P[<σ>]  Q[<σ>]"

lemma weakCongE:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   σ :: "(name list × 'a list) list"

  assumes "P c Q"
  "wellFormedSubst σ"

  shows "Ψ  P[<σ>]  Q[<σ>]"
using assms
by(auto simp add: weakCongruence_def)

lemma weakCongI[case_names cWeakPsiCong]:
  fixes P   :: "('a, 'b, 'c) psi"
  and   Q   :: "('a, 'b, 'c) psi"

  assumes "Ψ σ. wellFormedSubst σ  Ψ  P[<σ>]  Q[<σ>]"

  shows "P c Q"
using assms
by(auto simp add: weakCongruence_def)

lemma weakCongClosed:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   p :: "name prm"
  
  assumes "P c Q"

  shows "(p  P) c (p  Q)"
proof(induct rule: weakCongI)
  case(cWeakPsiCong Ψ σ)
  note P c Q
  moreover from wellFormedSubst σ have "wellFormedSubst (rev p  σ)" by simp
  ultimately have "((rev p)  Ψ)  P[<(rev p  σ)>]   Q[<(rev p  σ)>]"
    by(rule weakCongE)
  thus ?case by(drule_tac p=p in weakPsiCongClosed) (simp add: eqvts)
qed

lemma weakCongReflexive:
  fixes Ψ  :: 'b
  and   P  :: "('a, 'b, 'c) psi"

  shows "P c P"
by(auto intro: weakCongI weakPsiCongReflexive)

lemma weakCongSym:
  fixes Ψ  :: 'b
  and   P  :: "('a, 'b, 'c) psi"
  and   Q  :: "('a, 'b, 'c) psi"

  assumes "P c Q"

  shows "Q c P"
using assms
by(auto simp add: weakCongruence_def weakPsiCongSym)

lemma weakCongTransitive:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   R :: "('a, 'b, 'c) psi"

  assumes "Ψ  P  Q"
  and     "Ψ  Q  R"

  shows "Ψ  P  R"
using assms
by(auto intro: weakCongI weakPsiCongTransitive dest: weakCongE)

lemma weakCongWeakBisim:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"

  assumes "P c Q"

  shows "Ψ  P  Q"
using assms
apply(drule_tac σ="[]" in weakCongE)
by(auto dest: weakPsiCongE)

lemma weakCongWeakPsiCong:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"

  assumes "P c Q"

  shows "Ψ  P  Q"
using assms
by(drule_tac weakCongE[where Ψ=Ψ and σ="[]"]) auto

lemma strongBisimWeakCong:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"

  assumes "P s Q"

  shows "P c Q"
proof(induct rule: weakCongI)
  case(cWeakPsiCong Ψ σ)
  from assms wellFormedSubst σ have "P[<σ>]  Q[<σ>]"
    by(rule closeSubstE)
  hence "Ψ  P[<σ>]  Q[<σ>]" by(metis bisimE(3) statEqBisim Identity Commutativity)
  thus ?case by(rule strongBisimWeakPsiCong)
qed

lemma structCongWeakCong:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"

  assumes "P s Q"

  shows "P c Q"
using assms
by(metis strongBisimWeakCong structCongBisimSubst)

lemma weakCongUnfold:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   σ :: "(name list × 'a list) list"

  assumes "P c Q"
  and     "wellFormedSubst σ"

  shows "P[<σ>] c Q[<σ>]"
proof(induct rule: weakCongI)
  case(cWeakPsiCong Ψ σ')
  with wellFormedSubst σ wellFormedSubst σ' have "wellFormedSubst(σ@σ')" by simp
  with P c Q have "Ψ  P[<(σ@σ')>]  Q[<(σ@σ')>]"
    by(rule weakCongE)
  thus "Ψ  P[<σ>][<σ'>]  Q[<σ>][<σ'>]"
    by simp
qed

lemma weakCongOutputPres:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   M :: 'a
  and   N :: 'a
  
  assumes "P c Q"

  shows "MN⟩.P c MN⟩.Q"
using assms
by(fastforce intro: weakCongI weakCongE weakPsiCongOutputPres)

lemma weakCongInputPres:
  fixes Ψ    :: 'b
  and   P    :: "('a, 'b, 'c) psi"
  and   Q    :: "('a, 'b, 'c) psi"
  and   M    :: 'a
  and   xvec :: "name list"
  and   N    :: 'a

  assumes "P c Q"
  and     "distinct xvec"

  shows "M⦇λ*xvec N⦈.P c M⦇λ*xvec N⦈.Q"
proof(induct rule: weakCongI)
  case(cWeakPsiCong Ψ σ)
  obtain p where "(p  xvec) ♯* σ"
             and "(p  xvec) ♯* P" and "(p  xvec) ♯* Q" and "(p  xvec) ♯* Ψ" and "(p  xvec) ♯* N"
             and S: "set p  set xvec × set (p  xvec)"
      by(rule_tac c="(σ, P, Q, Ψ, N)" in name_list_avoiding) auto
    
  from P c Q have "(p  P) c (p  Q)"
    by(rule weakCongClosed)
  {
    fix Tvec :: "'a list"
    from (p  P) c (p  Q) wellFormedSubst σ have "(p  P)[<σ>] c (p  Q)[<σ>]"
      by(rule weakCongUnfold)
    moreover assume "length xvec = length Tvec" and "distinct xvec"
    ultimately have "Ψ  ((p  P)[<σ>])[(p  xvec)::=Tvec]  ((p  Q)[<σ>])[(p  xvec)::=Tvec]" 
      by(drule_tac weakCongE[where σ="[((p  xvec), Tvec)]"]) auto
    hence "Ψ  ((p  P)[<σ>])[(p  xvec)::=Tvec]  ((p  Q)[<σ>])[(p  xvec)::=Tvec]"
      by(rule weakPsiCongE)
  }

  with (p  xvec) ♯* σ distinct xvec
  have "Ψ  (M⦇λ*(p  xvec) (p  N)⦈.(p  P))[<σ>]  (M⦇λ*(p  xvec) (p  N)⦈.(p  Q))[<σ>]"
    by(force intro: weakPsiCongInputPres)
  moreover from (p  xvec) ♯* N (p  xvec) ♯* P S have "M⦇λ*(p  xvec) (p  N)⦈.(p  P) = M⦇λ*xvec N⦈.P" 
    apply(simp add: psi.inject) by(rule inputChainAlpha[symmetric]) auto
  moreover from (p  xvec) ♯* N (p  xvec) ♯* Q S have "M⦇λ*(p  xvec) (p  N)⦈.(p  Q) = M⦇λ*xvec N⦈.Q"
    apply(simp add: psi.inject) by(rule inputChainAlpha[symmetric]) auto
  ultimately show ?case by force
qed

lemma weakCongCasePresAux:
  fixes Ψ   :: 'b
  and   CsP :: "('c × ('a, 'b, 'c) psi) list"
  and   CsQ :: "('c × ('a, 'b, 'c) psi) list"
  
  assumes C1: "φ P. (φ, P) mem CsP  Q. (φ, Q) mem CsQ  guarded Q  P c Q"
  and     C2: "φ Q. (φ, Q) mem CsQ  P. (φ, P) mem CsP  guarded P  P c Q"

  shows "Cases CsP c Cases CsQ"
proof -
  {
    fix Ψ :: 'b
    fix σ :: "(name list × 'a list) list"

    assume "wellFormedSubst σ"
    have "Ψ  Cases(caseListSeqSubst CsP σ)  Cases(caseListSeqSubst CsQ σ)"
    proof(rule weakPsiCongCasePres)
      fix φ P
      assume "(φ, P) mem (caseListSeqSubst CsP σ)"
      then obtain φ' P' where "(φ', P') mem CsP" and "φ = substCond.seqSubst φ' σ" and PeqP': "P = (P'[<σ>])"
        by(induct CsP) force+
      from (φ', P') mem CsP obtain Q' where "(φ', Q') mem CsQ" and "guarded Q'" and "P' c Q'" by(blast dest: C1)
      from (φ', Q') mem CsQ φ = substCond.seqSubst φ' σ obtain Q where "(φ, Q) mem (caseListSeqSubst CsQ σ)" and "Q = Q'[<σ>]"
        by(induct CsQ) auto
      with PeqP' guarded Q' P' c Q' wellFormedSubst σ show "Q. (φ, Q) mem (caseListSeqSubst CsQ σ)  guarded Q  (Ψ. Ψ  P  Q)"
        by(blast dest: weakCongE guardedSeqSubst)
    next
      fix φ Q
      assume "(φ, Q) mem (caseListSeqSubst CsQ σ)"
      then obtain φ' Q' where "(φ', Q') mem CsQ" and "φ = substCond.seqSubst φ' σ" and QeqQ': "Q = Q'[<σ>]"
        by(induct CsQ) force+
      from (φ', Q') mem CsQ obtain P' where "(φ', P') mem CsP" and "guarded P'" and "P' c Q'" by(blast dest: C2)
      from (φ', P') mem CsP φ = substCond.seqSubst φ' σ obtain P where "(φ, P) mem (caseListSeqSubst CsP σ)" and "P = P'[<σ>]"
        by(induct CsP) auto
      with QeqQ' guarded P' P' c Q' wellFormedSubst σ
      show "P. (φ, P) mem (caseListSeqSubst CsP σ)  guarded P  (Ψ. Ψ  P  Q)"
        by(blast dest: weakCongE guardedSeqSubst)
    qed
  }
  thus ?thesis
    by(rule_tac weakCongI) auto
qed

lemma weakCongParPres:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   R :: "('a, 'b, 'c) psi"
  
  assumes "P c Q"

  shows "P  R c Q  R"
using assms
by(fastforce intro: weakCongI weakCongE weakPsiCongParPres)

lemma weakCongResPres:
  fixes P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   x :: name

  assumes "P c Q"

  shows "⦇νxP c ⦇νxQ"
proof(induct rule: weakCongI)
  case(cWeakPsiCong Ψ σ)
  obtain y::name where "y  (Ψ::'b)" and "y  P" and "y  Q" and "y  σ"
    by(generate_fresh "name") (auto simp add: fresh_prod)

  from P c Q have "([(x, y)]  P) c ([(x, y)]  Q)" by(rule weakCongClosed)
  hence "Ψ  ([(x, y)]  P)[<σ>]  ([(x, y)]  Q)[<σ>]" using wellFormedSubst σ
    by(rule weakCongE)
  hence "Ψ  ⦇νy(([(x, y)]  P)[<σ>])  ⦇νy(([(x, y)]  Q)[<σ>])" using y  Ψ
    by(rule weakPsiCongResPres)
  with y  P y  Q  y  σ
  show "Ψ  (⦇νxP)[<σ>]  (⦇νxQ)[<σ>]"
    by(simp add: alphaRes)
qed

lemma weakCongBangPres:
  fixes P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
 
  assumes "P c Q"
  and     "guarded P"
  and     "guarded Q"

  shows "!P c !Q"
using assms
by(fastforce intro: weakCongI weakCongE weakPsiCongBangPres  guardedSeqSubst)

end

end