Theory Weak_Bisim_Subst

(* 
   Title: Psi-calculi   
   Author/Maintainer: Jesper Bengtson (jebe@itu.dk), 2012
*)
theory Weak_Bisim_Subst
  imports Weak_Bisim_Struct_Cong Weak_Bisim_Pres Bisim_Subst
begin

context env begin

abbreviation
  weakBisimSubstJudge (‹_  _ s _› [70, 70, 70] 65) where "Ψ  P s Q  (Ψ, P, Q)  closeSubst weakBisim"
abbreviation
  weakBisimSubstNilJudge (‹_ s _› [70, 70] 65) where "P s Q  𝟭  P s Q"

lemmas weakBisimSubstClosed[eqvt] = closeSubstClosed[OF weakBisimEqvt]
lemmas weakBisimEqvt[simp] = closeSubstEqvt[OF weakBisimEqvt]

lemma strongBisimSubstWeakBisimSubst:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"

  assumes "Ψ  P s Q"

  shows "Ψ  P s Q"
using assms
by(metis closeSubstI closeSubstE strongBisimWeakBisim)

lemma weakBisimSubstOutputPres:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   M :: 'a
  and   N :: 'a
  
  assumes "Ψ  P s Q"

  shows "Ψ  MN⟩.P s MN⟩.Q"
using assms
by(fastforce intro: closeSubstI closeSubstE weakBisimOutputPres)

lemma bisimSubstInputPres:
  fixes Ψ    :: 'b
  and   P    :: "('a, 'b, 'c) psi"
  and   Q    :: "('a, 'b, 'c) psi"
  and   M    :: 'a
  and   xvec :: "name list"
  and   N    :: 'a

  assumes "Ψ  P s Q"
  and     "xvec ♯* Ψ"
  and     "distinct xvec"

  shows "Ψ  M⦇λ*xvec N⦈.P s M⦇λ*xvec N⦈.Q"
proof(rule_tac closeSubstI)
  fix σ :: "(name list × 'a list) list"
  assume "wellFormedSubst σ"
  obtain p where "(p  xvec) ♯* σ"
           and "(p  xvec) ♯* P" and "(p  xvec) ♯* Q" and "(p  xvec) ♯* Ψ" and "(p  xvec) ♯* N"
           and S: "set p  set xvec × set (p  xvec)"
    by(rule_tac c="(σ, P, Q, Ψ, N)" in name_list_avoiding) auto
    
  from Ψ  P s Q have "(p  Ψ)  (p  P) s (p  Q)"
    by(rule weakBisimSubstClosed)
  with xvec ♯* Ψ (p  xvec) ♯* Ψ S have "Ψ  (p  P) s (p  Q)"
    by simp

  {
    fix Tvec' :: "'a list"
    assume "length (p  xvec) = length Tvec'"
    with wellFormedSubst σ distinct xvec have "wellFormedSubst (σ @ [(p  xvec,Tvec')])"
      by simp
    with Ψ  (p  P) s (p  Q) have "Ψ  (p  P)[<(σ @ [(p  xvec,Tvec')])>]  (p  Q)[<(σ @ [(p  xvec,Tvec')])>]"
      by (rule closeSubstE)
    then have "Ψ  ((p  P)[<σ>])[(p  xvec)::=Tvec']  ((p  Q)[<σ>])[(p  xvec)::=Tvec']"
      by (metis seqSubsCons seqSubsNil seqSubsTermAppend)
  }

  then have "Ψ  M[<σ>]⦇λ*(p  xvec) (p  N)[<σ>]⦈.((p  P)[<σ>])  M[<σ>]⦇λ*(p  xvec) (p  N)[<σ>]⦈.((p  Q)[<σ>])"
    using weakBisimInputPres by metis
  with (p  xvec) ♯* σ have "Ψ  (M⦇λ*(p  xvec) (p  N)⦈.(p  P))[<σ>]  (M⦇λ*(p  xvec) (p  N)⦈.(p  Q))[<σ>]"
    by (metis seqSubstInputChain seqSubstSimps(3))
  moreover from (p  xvec) ♯* N (p  xvec) ♯* P S have "M⦇λ*(p  xvec) (p  N)⦈.(p  P) = M⦇λ*xvec N⦈.P"
    apply (simp add: psi.inject) by (rule inputChainAlpha[symmetric]) auto
  moreover from (p  xvec) ♯* N (p  xvec) ♯* Q S have "M⦇λ*(p  xvec) (p  N)⦈.(p  Q) = M⦇λ*xvec N⦈.Q"
    apply (simp add: psi.inject) by (rule inputChainAlpha[symmetric]) auto
  ultimately show "Ψ  (M⦇λ*xvec N⦈.P)[<σ>]  (M⦇λ*xvec N⦈.Q)[<σ>]"
    by force
qed
(*
lemma bisimSubstCasePresAux:
  fixes Ψ   :: 'b
  and   CsP :: "('c × ('a, 'b, 'c) psi) list"
  and   CsQ :: "('c × ('a, 'b, 'c) psi) list"
  
  assumes C1: "⋀φ P. (φ, P) mem CsP ⟹ ∃Q. (φ, Q) mem CsQ ∧ guarded Q ∧ Ψ ⊳ P ∼s Q"
  and     C2: "⋀φ Q. (φ, Q) mem CsQ ⟹ ∃P. (φ, P) mem CsP ∧ guarded P ∧ Ψ ⊳ P ∼s Q"

  shows "Ψ ⊳ Cases CsP ∼s Cases CsQ"
proof -
  {
    fix xvec :: "name list"
    and Tvec :: "'a list"

    assume "length xvec = length Tvec"
    and    "distinct xvec"

    have "Ψ ⊳ Cases(caseListSubst CsP xvec Tvec) ∼ Cases(caseListSubst CsQ xvec Tvec)"
    proof(rule bisimCasePres)
      fix φ P
      assume "(φ, P) mem (caseListSubst CsP xvec Tvec)"
      then obtain φ' P' where "(φ', P') mem CsP" and "φ = substCond φ' xvec Tvec" and PeqP': "P = (P'[xvec::=Tvec])"
        by(induct CsP) force+
      from `(φ', P') mem CsP` obtain Q' where "(φ', Q') mem CsQ" and "guarded Q'" and "Ψ ⊳ P' ∼s Q'" by(blast dest: C1)
      from `(φ', Q') mem CsQ` `φ = substCond φ' xvec Tvec` obtain Q where "(φ, Q) mem (caseListSubst CsQ xvec Tvec)" and "Q = Q'[xvec::=Tvec]"
        by(induct CsQ) auto
      with PeqP' `guarded Q'` `Ψ ⊳ P' ∼s Q'` `length xvec = length Tvec` `distinct xvec` show "∃Q. (φ, Q) mem (caseListSubst CsQ xvec Tvec) ∧ guarded Q ∧ Ψ ⊳ P ∼ Q"
        by(blast dest: bisimSubstE guardedSubst)
    next
      fix φ Q
      assume "(φ, Q) mem (caseListSubst CsQ xvec Tvec)"
      then obtain φ' Q' where "(φ', Q') mem CsQ" and "φ = substCond φ' xvec Tvec" and QeqQ': "Q = Q'[xvec::=Tvec]"
        by(induct CsQ) force+
      from `(φ', Q') mem CsQ` obtain P' where "(φ', P') mem CsP" and "guarded P'" and "Ψ ⊳ P' ∼s Q'" by(blast dest: C2)
      from `(φ', P') mem CsP` `φ = substCond φ' xvec Tvec` obtain P where "(φ, P) mem (caseListSubst CsP xvec Tvec)" and "P = P'[xvec::=Tvec]"
        by(induct CsP) auto
      with QeqQ' `guarded P'` `Ψ ⊳ P' ∼s Q'` `length xvec = length Tvec` `distinct xvec` show "∃P. (φ, P) mem (caseListSubst CsP xvec Tvec) ∧ guarded P ∧ Ψ ⊳ P ∼ Q"
        by(blast dest: bisimSubstE guardedSubst)
    qed
  }
  thus ?thesis
    by(rule_tac bisimSubstI) auto
qed
*)
lemma weakBisimSubstReflexive:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"

  shows "Ψ  P s P"
by(auto intro: closeSubstI weakBisimReflexive)

lemma bisimSubstTransitive:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   R :: "('a, 'b, 'c) psi"

  assumes "Ψ  P s Q"
  and     "Ψ  Q s R"

  shows "Ψ  P s R"
using assms
by(auto intro: closeSubstI closeSubstE weakBisimTransitive)

lemma weakBisimSubstSymmetric:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"

  assumes "Ψ  P s Q"

  shows "Ψ  Q s P"
using assms
by(auto intro: closeSubstI closeSubstE weakBisimE)
(*
lemma bisimSubstCasePres:
  fixes Ψ   :: 'b
  and   CsP :: "('c × ('a, 'b, 'c) psi) list"
  and   CsQ :: "('c × ('a, 'b, 'c) psi) list"
  
  assumes "length CsP = length CsQ"
  and     C: "⋀(i::nat) φ P φ' Q. ⟦i <= length CsP; (φ, P) = nth CsP i; (φ', Q) = nth CsQ i⟧ ⟹ φ = φ' ∧ Ψ ⊳ P ∼ Q"

  shows "Ψ ⊳ Cases CsP ∼s Cases CsQ"
proof -
  {
    fix φ 
    and P

    assume "(φ, P) mem CsP"

    with `length CsP = length CsQ` have "∃Q. (φ, Q) mem CsQ ∧ Ψ ⊳ P ∼s Q"
      apply(induct n=="length CsP" arbitrary: CsP CsQ rule: nat.induct)
      apply simp
      apply simp
      apply auto

  }
using `length CsP = length CsQ`
proof(induct n=="length CsP" rule: nat.induct)
  case zero
  thus ?case by(fastforce intro: bisimSubstReflexive)
next
  case(Suc n)
next
apply auto
apply(blast intro: bisimSubstReflexive)
apply auto
apply(simp add: nth.simps)
apply(auto simp add: nth.simps)
apply blast
apply(rule_tac bisimSubstCasePresAux)
apply auto
*)
lemma weakBisimSubstParPres:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   R :: "('a, 'b, 'c) psi"
  
  assumes "Ψ  P s Q"

  shows "Ψ  P  R s Q  R"
using assms
by(fastforce intro: closeSubstI closeSubstE weakBisimParPres)

lemma weakBisimSubstResPres:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   x :: name

  assumes "Ψ  P s Q"
  and     "x  Ψ"

  shows "Ψ  ⦇νxP s ⦇νxQ"
proof(rule closeSubstI)
  fix σ :: "(name list × 'a list) list"
  assume "wellFormedSubst σ"
  obtain y::name where "y  Ψ" and "y  P" and "y  Q" and "y  σ"
    by (generate_fresh "name") auto

  from Ψ  P s Q have "([(x, y)]  Ψ)  ([(x, y)]  P) s ([(x, y)]  Q)"
    by (rule weakBisimSubstClosed)
  with x  Ψ y  Ψ have "Ψ  ([(x, y)]  P) s ([(x, y)]  Q)"
    by simp
  hence "Ψ  ([(x, y)]  P)[<σ>]  ([(x, y)]  Q)[<σ>]"
    using wellFormedSubst σ by (rule closeSubstE)
  hence "Ψ  ⦇νy(([(x, y)]  P)[<σ>])  ⦇νy(([(x, y)]  Q)[<σ>])"
    using y  Ψ by (rule weakBisimResPres)
  with y  P y  Q y  σ show "Ψ  (⦇νxP)[<σ>]  (⦇νxQ)[<σ>]"
    by (simp add: alphaRes)
qed

(*
lemma bisimSubstBangPres:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
 
  assumes "Ψ ⊳ P ∼s Q"
  and     "guarded P"
  and     "guarded Q"

  shows "Ψ ⊳ !P ∼s !Q"
using assms
by(fastforce intro: bisimSubstI bisimSubstE bisimBangPres)
*)

lemma weakBisimSubstParNil:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"

  shows "Ψ  P  𝟬 s P"
by(metis strongBisimSubstWeakBisimSubst bisimSubstParNil) 

lemma weakBisimSubstParComm:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"

  shows "Ψ  P  Q s Q  P"
by(metis strongBisimSubstWeakBisimSubst bisimSubstParComm) 

lemma weakBisimSubstParAssoc:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   R :: "('a, 'b, 'c) psi"

  shows "Ψ  (P  Q)  R s P  (Q  R)"
by(metis strongBisimSubstWeakBisimSubst bisimSubstParAssoc) 

lemma weakBisimSubstResNil:
  fixes Ψ :: 'b
  and   x :: name

  shows "Ψ  ⦇νx𝟬 s 𝟬"
by(metis strongBisimSubstWeakBisimSubst bisimSubstResNil) 

lemma weakBisimSubstScopeExt:
  fixes Ψ :: 'b
  and   x :: name
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"

  assumes "x  P"

  shows "Ψ  ⦇νx(P  Q) s P  ⦇νxQ" 
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstScopeExt) 

lemma weakBisimSubstCasePushRes:
  fixes x  :: name
  and   Ψ  :: 'b
  and   Cs :: "('c × ('a, 'b, 'c) psi) list"

  assumes "x  map fst Cs"

  shows "Ψ  ⦇νx(Cases Cs) s Cases map (λ(φ, P). (φ, ⦇νxP)) Cs"
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstCasePushRes) 

lemma weakBisimSubstOutputPushRes:
  fixes x :: name
  and   Ψ :: 'b
  and   M :: 'a
  and   N :: 'a
  and   P :: "('a, 'b, 'c) psi"

  assumes "x  Ψ"
  and     "x  M"
  and     "x  N"

  shows "Ψ  ⦇νx(MN⟩.P) s MN⟩.⦇νxP"
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstOutputPushRes) 

lemma weakBisimSubstInputPushRes:
  fixes x    :: name
  and   Ψ    :: 'b
  and   M    :: 'a
  and   xvec :: "name list"
  and   N    :: 'a

  assumes "x  M"
  and     "x  xvec"
  and     "x  N"

  shows "Ψ  ⦇νx(M⦇λ*xvec N⦈.P) s M⦇λ*xvec N⦈.⦇νxP"
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstInputPushRes) 

lemma weakBisimSubstResComm:
  fixes x :: name
  and   y :: name

  shows "Ψ  ⦇νx(⦇νyP) s ⦇νy(⦇νxP)"
by(metis strongBisimSubstWeakBisimSubst bisimSubstResComm) 

lemma weakBisimSubstExtBang:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  
  assumes "guarded P"

  shows "Ψ  !P s P  !P"
using assms
by(metis strongBisimSubstWeakBisimSubst bisimSubstExtBang) 

end

end