Theory Bisimulation

(* 
   Title: Psi-calculi   
   Author/Maintainer: Jesper Bengtson (jebe@itu.dk), 2012
*)
theory Bisimulation
  imports Simulation
begin

context env begin

lemma monoCoinduct: "x y xa xb xc P Q Ψ.
                      x  y 
                      (Ψ  Q ↝[{(xc, xb, xa). x xc xb xa}] P) 
                     (Ψ  Q ↝[{(xb, xa, xc). y xb xa xc}] P)"
apply auto
apply(rule monotonic)
by(auto dest: le_funE)

coinductive_set bisim :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set" 
where
  step: "(insertAssertion (extractFrame P)) Ψ F (insertAssertion (extractFrame Q) Ψ);
          Ψ  P ↝[bisim] Q;
          Ψ'. (Ψ  Ψ',  P, Q)  bisim; (Ψ, Q, P)  bisim  (Ψ, P, Q)  bisim"
monos monoCoinduct

abbreviation
  bisimJudge (‹_  _  _› [70, 70, 70] 65) where "Ψ  P  Q  (Ψ, P, Q)  bisim"
abbreviation
  bisimNilJudge (‹_  _› [70, 70] 65) where "P  Q  SBottom'  P  Q"

lemma bisimCoinductAux[consumes 1]:
  fixes F :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes "(Ψ, P, Q)  X"
  and     "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ 
                                    (Ψ  P ↝[(X  bisim)] Q) 
                                    (Ψ'. (Ψ  Ψ', P, Q)  X  (Ψ  Ψ', P, Q)  bisim) 
                                    ((Ψ, Q, P)  X  (Ψ, Q, P)  bisim)"

  shows "(Ψ, P, Q)  bisim"
proof -
  have "X  bisim = {(Ψ, P, Q). (Ψ, P, Q)  X  (Ψ, P, Q)  bisim}" by auto
  with assms show ?thesis
    by coinduct simp
qed

lemma bisimCoinduct[consumes 1, case_names cStatEq cSim cExt cSym]:
  fixes F :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes "(Ψ, P, Q)  X"
  and     "Ψ' R S. (Ψ', R, S)  X  insertAssertion (extractFrame R) Ψ' F insertAssertion (extractFrame S) Ψ'"
  and     "Ψ' R S. (Ψ', R, S)  X  Ψ'  R ↝[(X  bisim)] S"
  and     "Ψ' R S Ψ''. (Ψ', R, S)  X  (Ψ'  Ψ'', R, S)  X  (Ψ'  Ψ'', R, S)  bisim"
  and     "Ψ' R S. (Ψ', R, S)  X  (Ψ', S, R)  X  (Ψ', S, R)  bisim"

  shows "(Ψ, P, Q)  bisim"
proof -
  have "X  bisim = {(Ψ, P, Q). (Ψ, P, Q)  X  (Ψ, P, Q)  bisim}" by auto
  with assms show ?thesis
    by coinduct simp
qed

lemma bisimWeakCoinductAux[consumes 1]:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes "(Ψ, P, Q)  X"
  and     "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ 
                                     Ψ  P ↝[X] Q 
                                    (Ψ'. (Ψ  Ψ', P, Q)  X)  (Ψ, Q, P)  X" 

  shows "(Ψ, P, Q)  bisim"
using assms
by(coinduct rule: bisimCoinductAux) (blast intro: monotonic)

lemma bisimWeakCoinduct[consumes 1, case_names cStatEq cSim cExt cSym]:
  fixes F :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes "(Ψ, P, Q)  X"
  and     "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and     "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[X] Q"
  and     "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and     "Ψ P Q. (Ψ, P, Q)  X  (Ψ, Q, P)  X"

  shows "(Ψ, P, Q)  bisim"
proof -
  have "X  bisim = {(Ψ, P, Q). (Ψ, P, Q)  X  (Ψ, P, Q)  bisim}" by auto
  with assms show ?thesis
  by(coinduct rule: bisimCoinduct) (blast intro: monotonic)+
qed

lemma bisimE:
  fixes P  :: "('a, 'b, 'c) psi"
  and   Q  :: "('a, 'b, 'c) psi"
  and   Ψ  :: 'b
  and   Ψ' :: 'b

  assumes "(Ψ, P, Q)  bisim"

  shows "insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and   "Ψ  P ↝[bisim] Q"
  and   "(Ψ  Ψ', P, Q)  bisim"
  and   "(Ψ, Q, P)  bisim"
using assms
by(auto simp add: intro: bisim.cases)

lemma bisimI:
  fixes P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   Ψ :: 'b

  assumes "insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and     "Ψ  P ↝[bisim] Q"
  and     "Ψ'. (Ψ  Ψ', P, Q)  bisim"
  and     "(Ψ, Q, P)  bisim"

  shows "(Ψ, P, Q)  bisim"
using assms
by(auto intro: bisim.step)

lemma bisimReflexive:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"


  shows "Ψ  P  P"
proof -
  let ?X = "{(Ψ, P, P) | Ψ P. True}"
  have "(Ψ, P, P)  ?X" by simp
  thus ?thesis
    by(coinduct rule: bisimWeakCoinduct, auto intro: reflexive)
qed

lemma bisimClosed:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   p :: "name prm"
  
  assumes PBisimQ: "Ψ  P  Q"

  shows "(p  Ψ)   (p  P)  (p  Q)"
proof -
  let ?X = "{(p  Ψ, p  P, p  Q) | (p::name prm) Ψ  P Q. Ψ  P  Q}"
  from PBisimQ have "(p  Ψ, p  P, p  Q)  ?X" by blast
  thus ?thesis
  proof(coinduct rule: bisimWeakCoinduct)
    case(cStatEq Ψ P Q)
    have "Ψ P Q (p::name prm). insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ 
          insertAssertion (extractFrame(p  P)) (p  Ψ) F insertAssertion (extractFrame(p  Q))  (p  Ψ)"
      by(drule_tac p = p in FrameStatEqClosed) (simp add: eqvts)
      
    with (Ψ, P, Q)  ?X show ?case by(blast dest: bisimE)
  next
    case(cSim Ψ P Q)
    {
      fix p :: "name prm"
      fix Ψ P Q
      have "eqvt ?X"
        apply(auto simp add: eqvt_def)
        apply(rule_tac x="pa@p" in exI)
        by(auto simp add: pt2[OF pt_name_inst])
      moreover assume "Ψ  P ↝[bisim] Q"
      hence "Ψ  P ↝[?X] Q"
        apply(rule_tac A=bisim in monotonic, auto)
        by(rule_tac x="[]::name prm" in exI) auto
      ultimately have "((p::name prm)  Ψ)  (p  P) ↝[?X] (p  Q)"
        by(rule_tac simClosed)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P Q Ψ')
    {
      fix p :: "name prm"
      fix Ψ P Q Ψ'
      assume "Ψ'. (Ψ  Ψ', P, Q)  bisim"
      hence "((p  Ψ)  Ψ', p  P, p  Q)  ?X"  
        apply(auto, rule_tac x=p in exI)
        apply(rule_tac x="Ψ  (rev p  Ψ')" in exI)
        by(auto simp add: eqvts)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cSym Ψ P Q)
    thus ?case
      by(blast dest: bisimE)
  qed
qed

lemma bisimEqvt[simp]:
  shows "eqvt bisim"
by(auto simp add: eqvt_def bisimClosed)

lemma statEqBisim:
  fixes Ψ  :: 'b
  and   P  :: "('a, 'b, 'c) psi"
  and   Q  :: "('a, 'b, 'c) psi"
  and   Ψ' :: 'b
  
  assumes "Ψ  P  Q"
  and     "Ψ  Ψ'"

  shows "Ψ'  P  Q"
proof -
  let ?X = "{(Ψ', P, Q) | Ψ P Q Ψ'. Ψ  P  Q  Ψ  Ψ'}"
  from Ψ  P  Q Ψ  Ψ' have "(Ψ', P, Q)  ?X" by auto
  thus ?thesis
  proof(coinduct rule: bisimCoinduct)
    case(cStatEq Ψ' P Q)
    from (Ψ', P, Q)  ?X obtain Ψ where "Ψ  P  Q" and "Ψ  Ψ'"
      by auto
    from Ψ  P  Q have PeqQ: "insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
      by(rule bisimE)

    obtain AP ΨP where FrP: "extractFrame P = AP, ΨP" and "AP ♯* Ψ" and "AP ♯* Ψ'"
      by(rule_tac C="(Ψ, Ψ')" in freshFrame) auto
    obtain AQ ΨQ where FrQ: "extractFrame Q = AQ, ΨQ" and "AQ ♯* Ψ" and "AQ ♯* Ψ'"
      by(rule_tac C="(Ψ, Ψ')" in freshFrame) auto

    from PeqQ FrP FrQ AP ♯* Ψ AQ ♯* Ψ Ψ  Ψ'
    have "AP, Ψ'  ΨP F AQ, Ψ'  ΨQ"
      by simp (metis frameIntComposition FrameStatEqTrans FrameStatEqSym)
    with FrP FrQ AP ♯* Ψ' AQ ♯* Ψ' show ?case by simp
  next
    case(cSim Ψ' P Q)
    from (Ψ', P, Q)  ?X obtain Ψ where "Ψ  P  Q" and "Ψ  Ψ'"
      by auto
    from Ψ  P  Q have "Ψ  P ↝[bisim] Q" by(blast dest: bisimE)
    moreover have "eqvt ?X"
      by(auto simp add: eqvt_def) (metis bisimClosed AssertionStatEqClosed)
    hence "eqvt(?X  bisim)" by auto
    moreover note Ψ  Ψ'
    moreover have "Ψ P Q Ψ'. Ψ  P  Q; Ψ  Ψ'  (Ψ', P, Q)  ?X  bisim"
      by auto
    ultimately show ?case
      by(rule statEqSim)
  next
    case(cExt Ψ' P Q Ψ'')
    from (Ψ', P, Q)  ?X obtain Ψ where "Ψ  P  Q" and "Ψ  Ψ'"
      by auto
    from Ψ  P  Q have "Ψ  Ψ''  P  Q" by(rule bisimE)
    moreover from Ψ  Ψ' have "Ψ  Ψ''  Ψ'  Ψ''" by(rule Composition)
    ultimately show ?case by blast
  next
    case(cSym Ψ' P Q)
    from (Ψ', P, Q)  ?X obtain Ψ where "Ψ  P  Q" and "Ψ  Ψ'"
      by auto
    from Ψ  P  Q have "Ψ  Q  P" by(rule bisimE)
    thus ?case using Ψ  Ψ' by auto
  qed
qed

lemma bisimTransitive:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   R :: "('a, 'b, 'c) psi"

  assumes PQ: "Ψ  P  Q"
  and     QR: "Ψ  Q  R"

  shows "Ψ  P  R"
proof -
  let ?X = "{(Ψ, P, R) | Ψ P Q R. Ψ  P  Q  Ψ  Q  R}" 
  from PQ QR have "(Ψ, P, R)  ?X" by auto
  thus ?thesis
  proof(coinduct rule: bisimCoinduct)
    case(cStatEq Ψ P R)
    thus ?case by(blast dest: bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P R)
    {
      fix Ψ P Q R
      assume "Ψ  P ↝[bisim] Q" and "Ψ  Q ↝[bisim] R"
      moreover have "eqvt ?X"
        by(force simp add: eqvt_def dest: bisimClosed)
      with bisimEqvt have "eqvt (?X  bisim)" by blast
      moreover have "?X  ?X  bisim" by auto
      ultimately have "Ψ  P ↝[(?X  bisim)] R"
        by(force intro: transitive)
    }
    with (Ψ, P, R)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P R Ψ')
    thus ?case by(blast dest: bisimE)
  next
    case(cSym Ψ P R)
    thus ?case by(blast dest: bisimE)
  qed
qed

lemma weakTransitiveCoinduct[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  X 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X  (Ψ, Q, P)  X"

  shows "Ψ  P  Q"
proof -
  let ?X = "{(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  from p have "(Ψ, P, Q)  ?X"
    by(blast intro: bisimReflexive)
  thus ?thesis
  proof(coinduct rule: bisimWeakCoinduct)
    case(cStatEq Ψ P Q)
    thus ?case
      by(blast dest: rStatEq bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P Q)
    {
      fix Ψ P P' Q' Q
      assume "Ψ  P ↝[bisim] P'"
      moreover assume P'RelQ': "(Ψ, P', Q')  X"
      hence "Ψ  P' ↝[?X] Q'" by(rule rSim)
      moreover from eqvt X P'RelQ' have "eqvt ?X"
        apply(auto simp add: eqvt_def)
        apply(drule_tac p=p in bisimClosed)
        apply(drule_tac p=p in bisimClosed)
        apply(rule_tac x="p  P'a" in exI, simp)
        by(rule_tac x="p  Q'a" in exI, auto)
      ultimately have "Ψ  P ↝[?X] Q'"
        by(force intro: transitive dest: bisimTransitive)
      moreover assume "Ψ  Q' ↝[bisim] Q"
      ultimately have "Ψ  P ↝[?X] Q" using eqvt ?X
        by(force intro: transitive dest: bisimTransitive)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P Q Ψ')
    thus ?case by(blast dest: bisimE intro: rExt)
  next
    case(cSym Ψ P Q)
    thus ?case by(blast dest: bisimE intro: rSym)
  qed
qed

lemma weakTransitiveCoinduct'[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  X 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X 
                      (Ψ, Q, P)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"

  shows "Ψ  P  Q"
proof -
  let ?X = "{(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  from p have "(Ψ, P, Q)  ?X"
    by(blast intro: bisimReflexive)
  thus ?thesis
  proof(coinduct rule: bisimWeakCoinduct)
    case(cStatEq Ψ P Q)
    thus ?case
      by(blast dest: rStatEq bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P Q)
    {
      fix Ψ P P' Q' Q
      assume "Ψ  P ↝[bisim] P'"
      moreover assume P'RelQ': "(Ψ, P', Q')  X"
      hence "Ψ  P' ↝[?X] Q'" by(rule rSim)
      moreover from eqvt X P'RelQ' have "eqvt ?X"
        apply(auto simp add: eqvt_def)
        apply(drule_tac p=p in bisimClosed)
        apply(drule_tac p=p in bisimClosed)
        apply(rule_tac x="p  P'a" in exI, simp)
        by(rule_tac x="p  Q'a" in exI, auto)
      ultimately have "Ψ  P ↝[?X] Q'"
        by(force intro: transitive dest: bisimTransitive)
      moreover assume "Ψ  Q' ↝[bisim] Q"
      ultimately have "Ψ  P ↝[?X] Q" using eqvt ?X
        by(force intro: transitive dest: bisimTransitive)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P Q Ψ')
    thus ?case by(blast dest: bisimE intro: rExt)
  next
    case(cSym Ψ P Q)
    thus ?case
      apply auto
      apply(drule rSym)
      apply auto
      by(metis bisimTransitive bisimE(4))
  qed
qed

lemma weakTransitiveCoinduct''[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  X 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}  
                         (Ψ  Ψ', P, Q)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  and rSym: "Ψ P Q. (Ψ, P, Q)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}  
                      (Ψ, Q, P)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"

  shows "Ψ  P  Q"
proof -
  let ?X = "{(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  from p have "(Ψ, P, Q)  ?X"
    by(blast intro: bisimReflexive)
  thus ?thesis
  proof(coinduct rule: bisimWeakCoinduct)
    case(cStatEq Ψ P Q)
    thus ?case
      by(blast dest: rStatEq bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P Q)
    {
      fix Ψ P P' Q' Q
      assume "Ψ  P ↝[bisim] P'"
      moreover assume P'RelQ': "(Ψ, P', Q')  X"
      hence "Ψ  P' ↝[?X] Q'" by(rule rSim)
      moreover from eqvt X P'RelQ' have "eqvt ?X"
        apply(auto simp add: eqvt_def)
        apply(drule_tac p=p in bisimClosed)
        apply(drule_tac p=p in bisimClosed)
        apply(rule_tac x="p  P'a" in exI, simp)
        by(rule_tac x="p  Q'a" in exI, auto)
      ultimately have "Ψ  P ↝[?X] Q'"
        by(force intro: transitive dest: bisimTransitive)
      moreover assume "Ψ  Q' ↝[bisim] Q"
      ultimately have "Ψ  P ↝[?X] Q" using eqvt ?X
        by(force intro: transitive dest: bisimTransitive)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P Q Ψ')
    thus ?case by(rule_tac rExt)
  next
    case(cSym Ψ P Q)
    thus ?case by(rule_tac rSym)
  qed
qed

lemma transitiveCoinduct[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ' R S. (Ψ', R, S)  X  insertAssertion (extractFrame R) Ψ' F insertAssertion (extractFrame S) Ψ'"
  and rSim: "Ψ' R S. (Ψ', R, S)  X  Ψ'  R ↝[({(Ψ', R, S) | Ψ' R R' S' S. Ψ'  R  R' 
                                                                        ((Ψ', R', S')  X  Ψ'  R'  S') 
                                                                        Ψ'  S'  S})] S"
  and rExt: "Ψ' R S Ψ''. (Ψ', R, S)  X  (Ψ'  Ψ'', R, S)  X  Ψ'  Ψ''  R  S"
  and rSym: "Ψ' R S. (Ψ', R, S)  X  (Ψ', S, R)  X  Ψ'  S  R"


  shows "Ψ  P  Q"
proof -
  from p have "(Ψ, P, Q)  (X  bisim)"
    by blast
  moreover from eqvt X bisimEqvt have "eqvt (X  bisim)"
    by auto
  ultimately show ?thesis
  proof(coinduct rule: weakTransitiveCoinduct')
    case(cStatEq Ψ P Q)
    thus ?case
      by(blast intro: rStatEq dest: bisimE)
  next
    case(cSim Ψ P Q)
    thus ?case
      apply auto
      apply(blast intro: rSim)
      apply(drule bisimE(2))
      apply(rule_tac A=bisim in monotonic, simp)
      by(force intro: bisimReflexive)
  next
    case(cExt Ψ P Q Ψ')
    thus ?case
      by(blast dest: bisimE rExt)
  next
    case(cSym Ψ P Q)
    thus ?case by(blast dest: bisimE rSym intro: bisimReflexive)
  qed
qed

lemma transitiveCoinduct'[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"
  and   X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

  assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  (X  bisim) 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X  Ψ  Ψ'  P  Q"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X 
                      (Ψ, Q, P)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  ((Ψ, P', Q')  (X  bisim))  Ψ  Q'  Q}"

  shows "Ψ  P  Q"
proof -
  from p have "(Ψ, P, Q)  (X  bisim)"
    by blast
  moreover from eqvt X bisimEqvt have "eqvt (X  bisim)"
    by auto
  ultimately show ?thesis
  proof(coinduct rule: weakTransitiveCoinduct')
    case(cStatEq Ψ P Q)
    thus ?case
      by(blast intro: rStatEq dest: bisimE)
  next
    case(cSim Ψ P Q)
    thus ?case
      apply -
      apply(case_tac "(Ψ, P, Q)  X" for X)
      apply(rule_tac rSim)
      apply simp
      apply(clarify)
      apply(drule bisimE(2))
      apply(rule_tac A=bisim in monotonic, simp)
      by(force intro: bisimReflexive)
  next
    case(cExt Ψ P Q Ψ')
    thus ?case
      by(blast dest: bisimE rExt)
  next
    case(cSym Ψ P Q)
    thus ?case
      apply auto
      apply(drule rSym)
      apply auto
      apply(rule_tac x=Q in exI)
      apply(auto intro: bisimReflexive)
      apply(rule_tac x=P in exI)
      by(auto intro: bisimReflexive dest: bisimE(4))
  qed
qed

lemma bisimSymmetric:
  fixes Ψ :: 'b
  and   P :: "('a, 'b, 'c) psi"
  and   Q :: "('a, 'b, 'c) psi"

  assumes "Ψ  P  Q"
  
  shows "Ψ  Q  P"
using assms
by(rule bisimE)

lemma eqvtTrans[intro]:
  assumes "eqvt X"

  shows "eqvt {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  ((Ψ, P', Q')  X  Ψ  P'  Q')  Ψ  Q'  Q}"
using assms
apply(auto simp add: eqvt_def eqvts)
apply(erule_tac x="(a, P', Q')" in ballE, auto)
by(blast dest: bisimClosed)+

lemma eqvtWeakTrans[intro]:
  assumes "eqvt X"

  shows "eqvt {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
using assms
apply(auto simp add: eqvt_def eqvts)
apply(erule_tac x="(a, P', Q')" in ballE, auto)
by(blast dest: bisimClosed)+

end

end