Theory Simplifying
theory Simplifying
imports Lexer
begin
section ‹Lexer including simplifications›
fun F_RIGHT where
"F_RIGHT f v = Right (f v)"
fun F_LEFT where
"F_LEFT f v = Left (f v)"
fun F_Plus where
"F_Plus f⇩1 f⇩2 (Right v) = Right (f⇩2 v)"
| "F_Plus f⇩1 f⇩2 (Left v) = Left (f⇩1 v)"
| "F_Plus f1 f2 v = v"
fun F_Times1 where
"F_Times1 f⇩1 f⇩2 v = Seq (f⇩1 Void) (f⇩2 v)"
fun F_Times2 where
"F_Times2 f⇩1 f⇩2 v = Seq (f⇩1 v) (f⇩2 Void)"
fun F_Times where
"F_Times f⇩1 f⇩2 (Seq v⇩1 v⇩2) = Seq (f⇩1 v⇩1) (f⇩2 v⇩2)"
| "F_Times f1 f2 v = v"
fun simp_Plus where
"simp_Plus (Zero, f⇩1) (r⇩2, f⇩2) = (r⇩2, F_RIGHT f⇩2)"
| "simp_Plus (r⇩1, f⇩1) (Zero, f⇩2) = (r⇩1, F_LEFT f⇩1)"
| "simp_Plus (r⇩1, f⇩1) (r⇩2, f⇩2) =
(if r⇩1 = r⇩2 then (r⇩1, F_LEFT f⇩1) else (Plus r⇩1 r⇩2, F_Plus f⇩1 f⇩2))"
fun simp_Times where
"simp_Times (Zero, f⇩1) (r⇩2, f⇩2) = (Zero, undefined)"
| "simp_Times (r⇩1, f⇩1) (Zero, f⇩2) = (Zero, undefined)"
| "simp_Times (One, f⇩1) (r⇩2, f⇩2) = (r⇩2, F_Times1 f⇩1 f⇩2)"
| "simp_Times (r⇩1, f⇩1) (One, f⇩2) = (r⇩1, F_Times2 f⇩1 f⇩2)"
| "simp_Times (r⇩1, f⇩1) (r⇩2, f⇩2) = (Times r⇩1 r⇩2, F_Times f⇩1 f⇩2)"
lemma simp_Times_simps[simp]:
"simp_Times p1 p2 = (if (fst p1 = Zero) then (Zero, undefined)
else (if (fst p2 = Zero) then (Zero, undefined)
else (if (fst p1 = One) then (fst p2, F_Times1 (snd p1) (snd p2))
else (if (fst p2 = One) then (fst p1, F_Times2 (snd p1) (snd p2))
else (Times (fst p1) (fst p2), F_Times (snd p1) (snd p2))))))"
by (induct p1 p2 rule: simp_Times.induct)(auto)
lemma simp_Plus_simps[simp]:
"simp_Plus p1 p2 = (if (fst p1 = Zero) then (fst p2, F_RIGHT (snd p2))
else (if (fst p2 = Zero) then (fst p1, F_LEFT (snd p1))
else (if (fst p1 = fst p2) then (fst p1, F_LEFT (snd p1))
else (Plus (fst p1) (fst p2), F_Plus (snd p1) (snd p2)))))"
by (induct p1 p2 rule: simp_Plus.induct) (auto)
fun
simp :: "'a rexp ⇒ 'a rexp * ('a val ⇒ 'a val)"
where
"simp (Plus r1 r2) = simp_Plus (simp r1) (simp r2)"
| "simp (Times r1 r2) = simp_Times (simp r1) (simp r2)"
| "simp r = (r, id)"
fun
slexer :: "'a rexp ⇒ 'a list ⇒ ('a val) option"
where
"slexer r [] = (if nullable r then Some(mkeps r) else None)"
| "slexer r (c#s) = (let (rs, fr) = simp (deriv c r) in
(case (slexer rs s) of
None ⇒ None
| Some(v) ⇒ Some(injval r c (fr v))))"
lemma slexer_better_simp:
"slexer r (c#s) = (case (slexer (fst (simp (deriv c r))) s) of
None ⇒ None
| Some(v) ⇒ Some(injval r c ((snd (simp (deriv c r))) v)))"
by (auto split: prod.split option.split)
lemma L_fst_simp:
shows "lang r = lang (fst (simp r))"
by (induct r) (auto)
lemma Posix_simp:
assumes "s ∈ (fst (simp r)) → v"
shows "s ∈ r → ((snd (simp r)) v)"
using assms
proof(induct r arbitrary: s v rule: rexp.induct)
case (Plus r1 r2 s v)
have IH1: "⋀s v. s ∈ fst (simp r1) → v ⟹ s ∈ r1 → snd (simp r1) v" by fact
have IH2: "⋀s v. s ∈ fst (simp r2) → v ⟹ s ∈ r2 → snd (simp r2) v" by fact
have as: "s ∈ fst (simp (Plus r1 r2)) → v" by fact
consider (Zero_Zero) "fst (simp r1) = Zero" "fst (simp r2) = Zero"
| (Zero_NZero) "fst (simp r1) = Zero" "fst (simp r2) ≠ Zero"
| (NZero_Zero) "fst (simp r1) ≠ Zero" "fst (simp r2) = Zero"
| (NZero_NZero1) "fst (simp r1) ≠ Zero" "fst (simp r2) ≠ Zero" "fst (simp r1) = fst (simp r2)"
| (NZero_NZero2) "fst (simp r1) ≠ Zero" "fst (simp r2) ≠ Zero" "fst (simp r1) ≠ fst (simp r2)" by auto
then show "s ∈ Plus r1 r2 → snd (simp (Plus r1 r2)) v"
proof(cases)
case (Zero_Zero)
with as have "s ∈ Zero → v" by simp
then show "s ∈ Plus r1 r2 → snd (simp (Plus r1 r2)) v" by (rule Posix_elims(1))
next
case (Zero_NZero)
with as have "s ∈ fst (simp r2) → v" by simp
with IH2 have "s ∈ r2 → snd (simp r2) v" by simp
moreover
from Zero_NZero have "fst (simp r1) = Zero" by simp
then have "lang (fst (simp r1)) = {}" by simp
then have "lang r1 = {}" using L_fst_simp by auto
then have "s ∉ lang r1" by simp
ultimately have "s ∈ Plus r1 r2 → Right (snd (simp r2) v)" by (rule Posix_Plus2)
then show "s ∈ Plus r1 r2 → snd (simp (Plus r1 r2)) v"
using Zero_NZero by simp
next
case (NZero_Zero)
with as have "s ∈ fst (simp r1) → v" by simp
with IH1 have "s ∈ r1 → snd (simp r1) v" by simp
then have "s ∈ Plus r1 r2 → Left (snd (simp r1) v)" by (rule Posix_Plus1)
then show "s ∈ Plus r1 r2 → snd (simp (Plus r1 r2)) v" using NZero_Zero by simp
next
case (NZero_NZero1)
with as have a: "s ∈ fst (simp r1) → v" by simp
then show "s ∈ Plus r1 r2 → snd (simp (Plus r1 r2)) v"
using IH1 NZero_NZero1 Posix_Plus1 a by fastforce
next
case (NZero_NZero2)
with as have "s ∈ Plus (fst (simp r1)) (fst (simp r2)) → v" by simp
then consider (Left) v1 where "v = Left v1" "s ∈ (fst (simp r1)) → v1"
| (Right) v2 where "v = Right v2" "s ∈ (fst (simp r2)) → v2" "s ∉ lang (fst (simp r1))"
by (erule_tac Posix_elims(4))
then show "s ∈ Plus r1 r2 → snd (simp (Plus r1 r2)) v"
proof(cases)
case (Left)
then have "v = Left v1" "s ∈ r1 → (snd (simp r1) v1)" using IH1 by simp_all
then show "s ∈ Plus r1 r2 → snd (simp (Plus r1 r2)) v" using NZero_NZero2
by (simp_all add: Posix_Plus1)
next
case (Right)
then have "v = Right v2" "s ∈ r2 → (snd (simp r2) v2)" "s ∉ lang r1" using IH2 L_fst_simp by auto
then show "s ∈ Plus r1 r2 → snd (simp (Plus r1 r2)) v" using NZero_NZero2
by (simp_all add: Posix_Plus2)
qed
qed
next
case (Times r1 r2 s v)
have IH1: "⋀s v. s ∈ fst (simp r1) → v ⟹ s ∈ r1 → snd (simp r1) v" by fact
have IH2: "⋀s v. s ∈ fst (simp r2) → v ⟹ s ∈ r2 → snd (simp r2) v" by fact
have as: "s ∈ fst (simp (Times r1 r2)) → v" by fact
consider (Zero) "fst (simp r1) = Zero ∨ fst (simp r2) = Zero"
| (One_One) "fst (simp r1) = One" "fst (simp r2) = One"
| (One_NOne) "fst (simp r1) = One" "fst (simp r2) ≠ One" "fst (simp r2) ≠ Zero"
| (NOne_One) "fst (simp r1) ≠ One" "fst (simp r2) = One" "fst (simp r1) ≠ Zero"
| (NOne_NOne) "fst (simp r1) ≠ One" "fst (simp r2) ≠ One"
"fst (simp r1) ≠ Zero" "fst (simp r2) ≠ Zero" by auto
then show "s ∈ Times r1 r2 → snd (simp (Times r1 r2)) v"
proof(cases)
case (Zero)
with as have "False"
by (metis Posix_elims(1) fst_conv simp.simps(2) simp_Times_simps)
then show "s ∈ Times r1 r2 → snd (simp (Times r1 r2)) v" by simp
next
case (One_One)
with as have b: "s ∈ One → v" by simp
from b have "s ∈ r1 → snd (simp r1) v" using IH1 One_One by simp
moreover
from b have c: "s = []" "v = Void" using Posix_elims(2) by auto
moreover
have "[] ∈ One → Void" by (simp add: Posix_One)
then have "[] ∈ fst (simp r2) → Void" using One_One by simp
then have "[] ∈ r2 → snd (simp r2) Void" using IH2 by simp
ultimately have "([] @ []) ∈ Times r1 r2 → Seq (snd (simp r1) Void) (snd (simp r2) Void)"
using Posix_Times by blast
then show "s ∈ Times r1 r2 → snd (simp (Times r1 r2)) v" using c One_One by simp
next
case (One_NOne)
with as have b: "s ∈ fst (simp r2) → v" by simp
from b have "s ∈ r2 → snd (simp r2) v" using IH2 One_NOne by simp
moreover
have "[] ∈ One → Void" by (simp add: Posix_One)
then have "[] ∈ fst (simp r1) → Void" using One_NOne by simp
then have "[] ∈ r1 → snd (simp r1) Void" using IH1 by simp
moreover
from One_NOne(1) have "lang (fst (simp r1)) = {[]}" by simp
then have "lang r1 = {[]}" by (simp add: L_fst_simp[symmetric])
ultimately have "([] @ s) ∈ Times r1 r2 → Seq (snd (simp r1) Void) (snd (simp r2) v)"
by(rule_tac Posix_Times) auto
then show "s ∈ Times r1 r2 → snd (simp (Times r1 r2)) v" using One_NOne by simp
next
case (NOne_One)
with as have "s ∈ fst (simp r1) → v" by simp
with IH1 have "s ∈ r1 → snd (simp r1) v" by simp
moreover
have "[] ∈ One → Void" by (simp add: Posix_One)
then have "[] ∈ fst (simp r2) → Void" using NOne_One by simp
then have "[] ∈ r2 → snd (simp r2) Void" using IH2 by simp
ultimately have "(s @ []) ∈ Times r1 r2 → Seq (snd (simp r1) v) (snd (simp r2) Void)"
by(rule_tac Posix_Times) auto
then show "s ∈ Times r1 r2 → snd (simp (Times r1 r2)) v" using NOne_One by simp
next
case (NOne_NOne)
with as have "s ∈ Times (fst (simp r1)) (fst (simp r2)) → v" by simp
then obtain s1 s2 v1 v2 where eqs: "s = s1 @ s2" "v = Seq v1 v2"
"s1 ∈ (fst (simp r1)) → v1" "s2 ∈ (fst (simp r2)) → v2"
"¬ (∃s⇩3 s⇩4. s⇩3 ≠ [] ∧ s⇩3 @ s⇩4 = s2 ∧ s1 @ s⇩3 ∈ lang r1 ∧ s⇩4 ∈ lang r2)"
by (erule_tac Posix_elims(5)) (auto simp add: L_fst_simp[symmetric])
then have "s1 ∈ r1 → (snd (simp r1) v1)" "s2 ∈ r2 → (snd (simp r2) v2)"
using IH1 IH2 by auto
then show "s ∈ Times r1 r2 → snd (simp (Times r1 r2)) v" using eqs NOne_NOne
by(auto intro: Posix_Times)
qed
qed (simp_all)
lemma slexer_correctness:
shows "slexer r s = lexer r s"
proof(induct s arbitrary: r)
case Nil
show "slexer r [] = lexer r []" by simp
next
case (Cons c s r)
have IH: "⋀r. slexer r s = lexer r s" by fact
show "slexer r (c # s) = lexer r (c # s)"
proof (cases "s ∈ lang (deriv c r)")
case True
assume a1: "s ∈ lang (deriv c r)"
then obtain v1 where a2: "lexer (deriv c r) s = Some v1" "s ∈ deriv c r → v1"
using lexer_correct_Some by auto
from a1 have "s ∈ lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto
then obtain v2 where a3: "lexer (fst (simp (deriv c r))) s = Some v2" "s ∈ (fst (simp (deriv c r))) → v2"
using lexer_correct_Some by auto
then have a4: "slexer (fst (simp (deriv c r))) s = Some v2" using IH by simp
from a3(2) have "s ∈ deriv c r → (snd (simp (deriv c r))) v2" using Posix_simp by auto
with a2(2) have "v1 = (snd (simp (deriv c r))) v2" using Posix_determ by auto
with a2(1) a4 show "slexer r (c # s) = lexer r (c # s)" by (auto split: prod.split)
next
case False
assume b1: "s ∉ lang (deriv c r)"
then have "lexer (deriv c r) s = None" using lexer_correct_None by auto
moreover
from b1 have "s ∉ lang (fst (simp (deriv c r)))" using L_fst_simp[symmetric] by auto
then have "lexer (fst (simp (deriv c r))) s = None" using lexer_correct_None by auto
then have "slexer (fst (simp (deriv c r))) s = None" using IH by simp
ultimately show "slexer r (c # s) = lexer r (c # s)"
by (simp del: slexer.simps add: slexer_better_simp)
qed
qed
end