Theory Strong_Late_Bisim

(* 
   Title: The pi-calculus   
   Author/Maintainer: Jesper Bengtson (jebe.dk), 2012
*)
theory Strong_Late_Bisim
  imports Strong_Late_Sim
begin

lemma monoAux: "A  B  P ↝[A] Q  P ↝[B] Q"
by(auto intro: Strong_Late_Sim.monotonic)

coinductive_set bisim :: "(pi × pi) set"
where
  step: "P ↝[bisim] Q; (Q, P)  bisim  (P, Q)  bisim"
monos monoAux

abbreviation
  strongBisimJudge (infixr  65) where "P  Q  (P, Q)  bisim"

lemma monotonic': "mono(λS. {(P, Q) |P Q. P ↝[S] Q  Q ↝[S] P})"
apply(rule monoI)
by(auto dest: monoAux)

lemma monotonic: "mono(λp x1 x2.
        P Q. x1 = P 
              x2 = Q  P ↝[{(xa, x). p xa x}] Q  Q ↝[{(xa, x). p xa x}] P)"
apply(rule monoI)
by(auto intro: Strong_Late_Sim.monotonic)


lemma bisimCoinduct[case_names cSim cSym , consumes 1]:
  assumes p: "(P, Q)  X"
  and     rSim: "R S. (R, S)  X  R ↝[(X  bisim)] S"
  and     rSym: "R S. (R, S)  X  (S, R)  X"

  shows "P  Q"
proof -
  have aux: "X  bisim = {(P, Q). (P, Q)  X  P  Q}" by blast

  from p show ?thesis
    apply(coinduct, auto)
    apply(fastforce dest: rSim simp add: aux)
    by(fastforce dest: rSym)
qed

lemma bisimE:
  fixes P :: pi
  and   Q :: pi

  assumes "P  Q"
  
  shows "P ↝[bisim] Q"
using assms
by(auto intro: bisim.cases)

lemma bisimI:
  fixes P :: pi
  and   Q :: pi
  
  assumes "P ↝[bisim] Q"
  and     "Q  P"

  shows "P  Q"
using assms
by(rule bisim.intros)

definition old_bisim :: "(pi × pi) set  bool" where
  "old_bisim Rel  (P, Q)  Rel. P ↝[Rel] Q  (Q, P)  Rel"

lemma oldBisimBisimEq:
  shows "({Rel. (old_bisim Rel)}) = bisim"  (is "?LHS = ?RHS")
proof
  show "?LHS  ?RHS"
  proof auto
    fix P Q Rel
    assume "(P, Q)  Rel" and "old_bisim Rel"
    thus "P  Q"
    proof(coinduct rule: bisimCoinduct)
      case(cSim P Q)
      with old_bisim Rel show ?case
        by(fastforce simp add: old_bisim_def intro: Strong_Late_Sim.monotonic)
    next
      case(cSym P Q)
      with old_bisim Rel show ?case
        by(auto simp add: old_bisim_def)
    qed
  qed
next
  show "?RHS  ?LHS"
  proof auto
    fix P Q
    assume "P  Q"
    moreover hence "old_bisim bisim"
      by(auto simp add: old_bisim_def dest: bisim.cases)
    ultimately show "Rel. old_bisim Rel  (P, Q)  Rel"
      by blast
  qed
qed

lemma reflexive:
  fixes P :: pi

  shows "P  P"
proof -
  have "(P, P)  Id" by simp
  thus ?thesis
    by(coinduct rule: bisimCoinduct, auto intro: Strong_Late_Sim.reflexive)
qed

lemma symmetric:
  fixes P :: pi
  and   Q :: pi
   
  assumes "P  Q"

  shows "Q  P"
using assms
by(auto dest: bisim.cases)

lemma bisimClosed:
  fixes P :: pi
  and   Q :: pi
  and   p :: "name prm"
  
  assumes "P  Q"

  shows "(p  P)  (p  Q)" 
proof -
  let ?X = "{(p  P, p  Q) | P Q (p::name prm). P  Q}"
  from P  Q have  "(p  P, p  Q)  ?X" by blast
  thus ?thesis
  proof(coinduct rule: bisimCoinduct)
    case(cSim pP pQ)
    from (pP, pQ)  ?X obtain P Q p where "P  Q" and "pP = (p::name prm)  P" and "pQ = p  Q"
      by auto
    from P  Q have "P ↝[bisim] Q" by(rule bisimE)
    moreover have "bisim  ?X"
    proof 
      fix x
      assume "x  bisim"
      moreover have "x = (([]::name prm)  x)" by auto
      ultimately show "x  ?X"
        apply(case_tac x)
        by(clarify, simp only: eqvts) metis
    qed
    moreover have "eqvt ?X"
    proof(auto simp add: eqvt_def)
      fix P Q
      fix perm1::"name prm"
      fix perm2::"name prm"
      
      assume "P  Q"
      moreover have "perm1  perm2  P = (perm1 @ perm2)  P" by(simp add: pt2[OF pt_name_inst])
      moreover have "perm1  perm2  Q = (perm1 @ perm2)  Q" by(simp add: pt2[OF pt_name_inst])
      
      ultimately show "P' Q'. ((perm::name prm). perm1  perm2  P = perm  P' 
                                                   perm1  perm2  Q = perm  Q')  P'  Q'"
        by blast
    qed
    ultimately have "(p  P) ↝[?X] (p  Q)" 
      by(rule Strong_Late_Sim.eqvtI)
    with pP = p  P pQ = p  Q show ?case
      by(force intro: Strong_Late_Sim.monotonic)
  next
    case(cSym P Q)
    thus ?case by(auto intro: symmetric)
  qed
qed

lemma bisimEqvt[simp]:
  shows "eqvt bisim"
by(auto simp add: eqvt_def bisimClosed)

lemma transitive:
  fixes P :: pi
  and   Q :: pi
  and   R :: pi

  assumes "P  Q"
  and     "Q  R"

  shows "P  R"
proof -
  let ?X = "bisim O bisim"
  from assms have "(P, R)  ?X" by blast
  thus ?thesis
  proof(coinduct rule: bisimCoinduct)
    case(cSim P R)
    thus ?case
      by(fastforce intro: Strong_Late_Sim.transitive dest: bisimE simp add: eqvtTrans)
  next
    case(cSym P R)
    thus ?case
      by(auto dest: symmetric)
  qed
qed

lemma bisimTransitiveCoinduct[case_names cSim cSym, case_conclusion bisim step, consumes 2]:
  assumes "(P, Q)  X"
  and "eqvt X"
  and rSim: "R S. (R, S)  X  R ↝[(bisim O (X  bisim) O bisim)] S"
  and rSym: "R S. (R, S)  X  (S, R)  bisim O (X  bisim) O bisim"

  shows "P  Q"
proof -
  let ?X = "bisim O (X  bisim) O bisim"
  from (P, Q)  X  have "(P, Q)  ?X" by(auto intro: reflexive)
  thus ?thesis
  proof(coinduct rule: bisimCoinduct)
    case(cSim P Q)
    {
      fix P P' Q' Q

      assume "P  P'" and "(P', Q')  X  bisim" and "Q'  Q"
      have "P ↝[(?X  bisim)] Q"
      proof(cases "(P', Q')  X")
        case True
        from P  P' have "P ↝[bisim] P'" by(rule bisimE)
        moreover from (P', Q')  X have "P' ↝[(?X)] Q'" by(rule rSim)
        moreover from eqvt X bisimEqvt have "eqvt(?X  bisim)" by blast
        moreover have "bisim O ?X  ?X  bisim" by(auto dest: transitive)
        ultimately have "P ↝[(?X  bisim)] Q'" by(rule Strong_Late_Sim.transitive)
        moreover from Q'  Q have "Q' ↝[bisim] Q" by(rule bisimE)
        moreover note eqvt(?X  bisim)
        moreover have "(?X  bisim) O bisim  ?X  bisim"
          by auto (blast dest: transitive)+
        ultimately show ?thesis by(rule Strong_Late_Sim.transitive)
      next
        case False
        from (P', Q')  X (P', Q')  X  bisim have "P'  Q'" by simp
        with P  P' Q'  Q have "P  Q" by(blast dest: transitive)
        hence "P ↝[bisim] Q" by(rule bisimE)
        moreover have "bisim  ?X  bisim" by auto
        ultimately show ?thesis by(rule Strong_Late_Sim.monotonic)
      qed
    }
    with (P, Q)  ?X show ?case by auto
    case(cSym P Q)
    {
      fix P P' Q' Q

      assume "P  P'" and "(P', Q')  X  bisim" and "Q'  Q"
      have "(Q, P)  bisim O (X  bisim) O bisim"
      proof(cases "(P', Q')  X")
        case True
        from (P', Q')  X have "(Q', P')  ?X" by(rule rSym)
        then obtain Q'' P'' where "Q'  Q''" and "(Q'', P'')  X  bisim" and "P''  P'"
          by auto
        from Q'  Q Q'  Q'' have "Q  Q''" by(metis transitive symmetric)
        moreover from P  P' P''  P' have "P''  P" by(metis transitive symmetric)
        ultimately show ?thesis using (Q'', P'')  X  bisim by blast
      next
        case False
        from (P', Q')  X (P', Q')  X  bisim have "P'  Q'" by simp
        with P  P' Q'  Q have "Q  P" by(metis transitive symmetric)
        thus ?thesis by(blast intro: reflexive)
      qed
    }
    with (P, Q)  ?X show ?case by blast
  qed
qed

end