Theory Strong_Early_Bisim_Subst
theory Strong_Early_Bisim_Subst
imports Strong_Early_Bisim
begin
abbreviation StrongCongEarlyJudge (infixr ‹∼⇧s› 65) where "P ∼⇧s Q ≡ (P, Q) ∈ (substClosed bisim)"
lemma congBisim:
fixes P :: pi
and Q :: pi
assumes "P ∼⇧s Q"
shows "P ∼ Q"
using assms substClosedSubset by blast
lemma eqvt:
shows "eqvt (substClosed bisim)"
by(rule eqvtSubstClosed[OF Strong_Early_Bisim.eqvt])
lemma eqvtI:
fixes P :: pi
and Q :: pi
and perm :: "name prm"
assumes "P ∼⇧s Q"
shows "(perm ∙ P) ∼⇧s (perm ∙ Q)"
using assms
by(rule eqvtRelI[OF eqvt])
lemma reflexive:
fixes P :: pi
shows "P ∼⇧s P"
by(force simp add: substClosed_def intro: Strong_Early_Bisim.reflexive)
lemma symetric:
fixes P :: pi
and Q :: pi
assumes "P ∼⇧s Q"
shows "Q ∼⇧s P"
using assms
by(force simp add: substClosed_def intro: Strong_Early_Bisim.bisimE)
lemma transitive:
fixes P :: pi
and Q :: pi
and R :: pi
assumes "P ∼⇧s Q"
and "Q ∼⇧s R"
shows "P ∼⇧s R"
using assms
by(force simp add: substClosed_def intro: Strong_Early_Bisim.transitive)
lemma partUnfold:
fixes P :: pi
and Q :: pi
and s :: "(name × name) list"
assumes "P ∼⇧s Q"
shows "P[<s>] ∼⇧s Q[<s>]"
using assms
proof(auto simp add: substClosed_def)
fix s'
assume "∀s. P[<s>] ∼ Q[<s>]"
hence "P[<(s@s')>] ∼ Q[<(s@s')>]" by blast
moreover have "P[<(s@s')>] = (P[<s>])[<s'>]"
by(induct s', auto)
moreover have "Q[<(s@s')>] = (Q[<s>])[<s'>]"
by(induct s', auto)
ultimately show "(P[<s>])[<s'>] ∼ (Q[<s>])[<s'>]"
by simp
qed
end