Theory Groups_mult
section ‹ Multiplication Groups ›
theory Groups_mult
imports Main
begin
text ‹ The HOL standard library only has groups based on addition. Here, we build one based on
multiplication. ›
notation times (infixl ‹⋅› 70)
class group_mult = inverse + monoid_mult +
assumes left_inverse: "inverse a ⋅ a = 1"
assumes multi_inverse_conv_div [simp]: "a ⋅ (inverse b) = a / b"
begin
lemma div_conv_mult_inverse: "a / b = a ⋅ (inverse b)"
by simp
sublocale mult: group times 1 inverse
by standard (simp_all add: left_inverse)
lemma diff_self [simp]: "a / a = 1"
using mult.right_inverse by auto
lemma mult_distrib_inverse [simp]: "(a * b) / b = a"
by (metis local.mult_1_right local.multi_inverse_conv_div mult.right_inverse mult_assoc)
end
class ab_group_mult = comm_monoid_mult + group_mult
begin
lemma mult_distrib_inverse' [simp]: "(a * b) / a = b"
using local.mult_distrib_inverse mult_commute by fastforce
lemma inverse_distrib: "inverse (a * b) = (inverse a) * (inverse b)"
by (simp add: local.mult.inverse_distrib_swap mult_commute)
lemma inverse_divide [simp]: "inverse (a / b) = b / a"
by (metis div_conv_mult_inverse inverse_distrib mult.commute mult.inverse_inverse)
end
abbreviation (input) npower :: "'a::{power,inverse} ⇒ nat ⇒ 'a" (‹(_⇧-⇧_)› [1000,999] 999)
where "npower x n ≡ inverse (x ^ n)"
end