Theory TAO_8_Definitions
theory TAO_8_Definitions
imports TAO_7_Axioms
begin
section‹Definitions›
text‹\label{TAO_Definitions}›
subsection‹Property Negations›
consts propnot :: "'a⇒'a" (‹_⇧-› [90] 90)
overloading propnot⇩0 ≡ "propnot :: Π⇩0⇒Π⇩0"
propnot⇩1 ≡ "propnot :: Π⇩1⇒Π⇩1"
propnot⇩2 ≡ "propnot :: Π⇩2⇒Π⇩2"
propnot⇩3 ≡ "propnot :: Π⇩3⇒Π⇩3"
begin
definition propnot⇩0 :: "Π⇩0⇒Π⇩0" where
"propnot⇩0 ≡ λ p . ❙λ⇧0 (❙¬p)"
definition propnot⇩1 where
"propnot⇩1 ≡ λ F . ❙λ x . ❙¬⦇F, x⇧P⦈"
definition propnot⇩2 where
"propnot⇩2 ≡ λ F . ❙λ⇧2 (λ x y . ❙¬⦇F, x⇧P, y⇧P⦈)"
definition propnot⇩3 where
"propnot⇩3 ≡ λ F . ❙λ⇧3 (λ x y z . ❙¬⦇F, x⇧P, y⇧P, z⇧P⦈)"
end
named_theorems propnot_defs
declare propnot⇩0_def[propnot_defs] propnot⇩1_def[propnot_defs]
propnot⇩2_def[propnot_defs] propnot⇩3_def[propnot_defs]
subsection‹Noncontingent and Contingent Relations›
consts Necessary :: "'a⇒𝗈"
overloading Necessary⇩0 ≡ "Necessary :: Π⇩0⇒𝗈"
Necessary⇩1 ≡ "Necessary :: Π⇩1⇒𝗈"
Necessary⇩2 ≡ "Necessary :: Π⇩2⇒𝗈"
Necessary⇩3 ≡ "Necessary :: Π⇩3⇒𝗈"
begin
definition Necessary⇩0 where
"Necessary⇩0 ≡ λ p . ❙□p"
definition Necessary⇩1 :: "Π⇩1⇒𝗈" where
"Necessary⇩1 ≡ λ F . ❙□(❙∀ x . ⦇F,x⇧P⦈)"
definition Necessary⇩2 where
"Necessary⇩2 ≡ λ F . ❙□(❙∀ x y . ⦇F,x⇧P,y⇧P⦈)"
definition Necessary⇩3 where
"Necessary⇩3 ≡ λ F . ❙□(❙∀ x y z . ⦇F,x⇧P,y⇧P,z⇧P⦈)"
end
named_theorems Necessary_defs
declare Necessary⇩0_def[Necessary_defs] Necessary⇩1_def[Necessary_defs]
Necessary⇩2_def[Necessary_defs] Necessary⇩3_def[Necessary_defs]
consts Impossible :: "'a⇒𝗈"
overloading Impossible⇩0 ≡ "Impossible :: Π⇩0⇒𝗈"
Impossible⇩1 ≡ "Impossible :: Π⇩1⇒𝗈"
Impossible⇩2 ≡ "Impossible :: Π⇩2⇒𝗈"
Impossible⇩3 ≡ "Impossible :: Π⇩3⇒𝗈"
begin
definition Impossible⇩0 where
"Impossible⇩0 ≡ λ p . ❙□❙¬p"
definition Impossible⇩1 where
"Impossible⇩1 ≡ λ F . ❙□(❙∀ x. ❙¬⦇F,x⇧P⦈)"
definition Impossible⇩2 where
"Impossible⇩2 ≡ λ F . ❙□(❙∀ x y. ❙¬⦇F,x⇧P,y⇧P⦈)"
definition Impossible⇩3 where
"Impossible⇩3 ≡ λ F . ❙□(❙∀ x y z. ❙¬⦇F,x⇧P,y⇧P,z⇧P⦈)"
end
named_theorems Impossible_defs
declare Impossible⇩0_def[Impossible_defs] Impossible⇩1_def[Impossible_defs]
Impossible⇩2_def[Impossible_defs] Impossible⇩3_def[Impossible_defs]
definition NonContingent where
"NonContingent ≡ λ F . (Necessary F) ❙∨ (Impossible F)"
definition Contingent where
"Contingent ≡ λ F . ❙¬(Necessary F ❙∨ Impossible F)"
definition ContingentlyTrue :: "𝗈⇒𝗈" where
"ContingentlyTrue ≡ λ p . p ❙& ❙◇❙¬p"
definition ContingentlyFalse :: "𝗈⇒𝗈" where
"ContingentlyFalse ≡ λ p . ❙¬p ❙& ❙◇p"
definition WeaklyContingent where
"WeaklyContingent ≡ λ F . Contingent F ❙& (❙∀ x. ❙◇⦇F,x⇧P⦈ ❙→ ❙□⦇F,x⇧P⦈)"
subsection‹Null and Universal Objects›
definition Null :: "κ⇒𝗈" where
"Null ≡ λ x . ⦇A!,x⦈ ❙& ❙¬(❙∃ F . ⦃x, F⦄)"
definition Universal :: "κ⇒𝗈" where
"Universal ≡ λ x . ⦇A!,x⦈ ❙& (❙∀ F . ⦃x, F⦄)"
definition NullObject :: "κ" (‹❙a⇩∅›) where
"NullObject ≡ (❙ιx . Null (x⇧P))"
definition UniversalObject :: "κ" (‹❙a⇩V›) where
"UniversalObject ≡ (❙ιx . Universal (x⇧P))"
subsection‹Propositional Properties›
definition Propositional where
"Propositional F ≡ ❙∃ p . F ❙= (❙λ x . p)"
subsection‹Indiscriminate Properties›
definition Indiscriminate :: "Π⇩1⇒𝗈" where
"Indiscriminate ≡ λ F . ❙□((❙∃ x . ⦇F,x⇧P⦈) ❙→ (❙∀ x . ⦇F,x⇧P⦈))"
subsection‹Miscellaneous›
definition not_identical⇩E :: "κ⇒κ⇒𝗈" (infixl ‹❙≠⇩E› 63)
where "not_identical⇩E ≡ λ x y . ⦇(❙λ⇧2 (λ x y . x⇧P ❙=⇩E y⇧P))⇧-, x, y⦈"
end