Theory OrdinalFix
section ‹Fixed-points›
theory OrdinalFix
imports OrdinalInverse
begin
primrec iter :: "nat ⇒ ('a ⇒ 'a) ⇒ ('a ⇒ 'a)"
where
"iter 0 F x = x"
| "iter (Suc n) F x = F (iter n F x)"
definition
oFix :: "(ordinal ⇒ ordinal) ⇒ ordinal ⇒ ordinal" where
"oFix F a = oLimit (λn. iter n F a)"
lemma oFix_fixed:
assumes "continuous F" "a ≤ F a"
shows "F (oFix F a) = oFix F a"
proof -
have "a ≤ oLimit (λn. F (iter n F a))"
by (metis OrdinalFix.iter.simps(1) ‹a ≤ F a› le_oLimitI)
then have "iter k F a ≤ oLimit (λn. F (iter n F a))" for k
by (induction k) auto
then have "oLimit (λn. F (iter n F a)) = oLimit (λn. iter n F a)"
by (metis (no_types, lifting) OrdinalFix.iter.simps(2) le_oLimit nle_le oLimit_leI)
then show ?thesis
by (simp add: assms(1) continuousD oFix_def)
qed
lemma oFix_least:
assumes "mono F" "F x = x" "a ≤ x" shows "oFix F a ≤ x"
proof -
have "iter n F a ≤ x" for n
proof (induction n)
case (Suc n)
with assms monotoneD show ?case by fastforce
qed (use assms in auto)
then show ?thesis
by (simp add: oFix_def oLimit_leI)
qed
lemma mono_oFix:
assumes "mono F" shows "mono (oFix F)"
proof -
have "iter n F x ≤ iter n F y" if "x ≤ y" for n x y
using that assms
by (induction n) (auto simp: monoD)
then show ?thesis
by (metis le_oLimitI monoI oFix_def oLimit_leI)
qed
lemma less_oFixD: "⟦x < oFix F a; mono F; F x = x⟧ ⟹ x < a"
by (meson linorder_not_le oFix_least)
lemma less_oFixI: "a < F a ⟹ a < oFix F a"
by (metis OrdinalFix.iter.simps leD le_oLimit oFix_def order_neq_le_trans)
lemma le_oFix: "a ≤ oFix F a"
by (metis OrdinalFix.iter.simps(1) le_oLimit oFix_def)
lemma le_oFix1: "F a ≤ oFix F a"
by (metis OrdinalFix.iter.simps le_oLimit oFix_def)
lemma less_oFix_0D:
assumes "x < oFix F 0" "mono F" shows "x < F x"
proof -
have "x < iter n F 0 ⟹ x < F x" for n
proof (induction n)
case 0 then show ?case by auto
next
case (Suc n)
with ‹mono F› show ?case
using monotoneD order.strict_trans2 by fastforce
qed
then show ?thesis
using assms(1) less_oLimitD oFix_def by fastforce
qed
lemma zero_less_oFix_eq: "(0 < oFix F 0) = (0 < F 0)"
proof -
have "F 0 ≤ 0 ⟹ iter n F 0 ≤ 0" for n
by (induction n) auto
then show ?thesis
using less_oFixI oFix_def by fastforce
qed
lemma oFix_eq_self:
assumes "F a = a" shows "oFix F a = a"
proof -
have "iter n F a = a" for n
by (induction n) (auto simp: assms)
then show ?thesis
by (simp add: oFix_def)
qed
subsection ‹Derivatives of ordinal functions›
text "The derivative of F enumerates all the fixed-points of F"
definition
oDeriv :: "(ordinal ⇒ ordinal) ⇒ ordinal ⇒ ordinal" where
"oDeriv F = ordinal_rec (oFix F 0) (λp x. oFix F (oSuc x))"
lemma oDeriv_0 [simp]:
"oDeriv F 0 = oFix F 0"
by (simp add: oDeriv_def)
lemma oDeriv_oSuc [simp]:
"oDeriv F (oSuc x) = oFix F (oSuc (oDeriv F x))"
by (simp add: oDeriv_def)
lemma oDeriv_oLimit [simp]:
"oDeriv F (oLimit f) = oLimit (λn. oDeriv F (f n))"
by (metis dual_order.trans le_oFix less_oSuc oDeriv_def order_le_less ordinal_rec_oLimit)
lemma oDeriv_fixed:
assumes "normal F" shows "F (oDeriv F n) = oDeriv F n"
proof (induction n rule: oLimit_induct)
case zero
then show ?case
by (simp add: assms normal.continuous oFix_fixed)
next
case (suc x)
then show ?case
by (simp add: assms normal.continuous normal.increasing oFix_fixed)
next
case (lim f)
then show ?case
by (simp add: assms continuousD normal.continuous)
qed
lemma oDeriv_fixedD: "⟦oDeriv F x = x; normal F⟧ ⟹ F x = x"
by (metis oDeriv_fixed)
lemma normal_oDeriv: "normal (oDeriv F)"
by (metis le_oFix normal_ordinal_rec oDeriv_def oSuc_le_eq_less)
lemma oDeriv_increasing:
assumes "continuous F" shows "F n ≤ oDeriv F n"
proof (induction n rule: oLimit_induct)
case zero
then show ?case
by (simp add: le_oFix1)
next
case (suc x)
with continuous.monoD [OF assms] show ?case
by (metis dual_order.trans le_oFix1 normal.increasing normal_oDeriv oDeriv_oSuc oSuc_le_oSuc)
next
case (lim f)
then show ?case
by (metis assms continuousD le_oLimitI oDeriv_oLimit oLimit_leI)
qed
lemma oDeriv_total:
assumes "normal F" "F x = x" shows "∃n. x = oDeriv F n"
proof -
have "∃n. oDeriv F n ≤ x ∧ x < oDeriv F (oSuc n)"
by (metis assms normal.mono normal.oInv_ex normal_oDeriv oDeriv_0 oFix_least ordinal_0_le)
then show ?thesis
by (metis assms leD normal.mono oDeriv_oSuc oFix_least oSuc_leI order_neq_le_trans)
qed
lemma range_oDeriv: "normal F ⟹ range (oDeriv F) = {x. F x = x}"
by (auto intro: oDeriv_fixed dest: oDeriv_total)
end