Theory Lens_Symmetric
section ‹ Symmetric Lenses ›
theory Lens_Symmetric
imports Lens_Order
begin
text ‹ A characterisation of Hofmann's ``Symmetric Lenses''~\<^cite>‹"Hofmann2011"›, where
a lens is accompanied by its complement. ›
record ('a, 'b, 's) slens =
view :: "'a ⟹ 's" (‹𝒱ı›)
coview :: "'b ⟹ 's" (‹𝒞ı›)
type_notation
slens (‹<_, _> ⟺ _› [0, 0, 0] 0)
declare slens.defs [lens_defs]
definition slens_compl :: "(<'a, 'c> ⟺ 'b) ⇒ <'c, 'a> ⟺ 'b" (‹-⇩L _› [81] 80) where
[lens_defs]: "slens_compl a = ⦇ view = coview a, coview = view a ⦈"
lemma view_slens_compl [simp]: "𝒱⇘-⇩L a⇙ = 𝒞⇘a⇙"
by (simp add: slens_compl_def)
lemma coview_slens_compl [simp]: "𝒞⇘-⇩L a⇙ = 𝒱⇘a⇙"
by (simp add: slens_compl_def)
subsection ‹ Partial Symmetric Lenses ›
locale psym_lens =
fixes S :: "<'a, 'b> ⟺ 's" (structure)
assumes
mwb_region [simp]: "mwb_lens 𝒱" and
mwb_coregion [simp]: "mwb_lens 𝒞" and
indep_region_coregion [simp]: "𝒱 ⨝ 𝒞" and
pbij_region_coregion [simp]: "pbij_lens (𝒱 +⇩L 𝒞)"
declare psym_lens.mwb_region [simp]
declare psym_lens.mwb_coregion [simp]
declare psym_lens.indep_region_coregion [simp]
lemma psym_lens_compl [simp]: "psym_lens a ⟹ psym_lens (-⇩L a)"
apply (simp add: slens_compl_def)
apply (rule psym_lens.intro)
apply (simp_all)
using lens_indep_sym psym_lens.indep_region_coregion apply blast
using lens_indep_sym pbij_plus_commute psym_lens_def apply blast
done
subsection ‹ Symmetric Lenses ›
locale sym_lens =
fixes S :: "<'a, 'b> ⟺ 's" (structure)
assumes
vwb_region: "vwb_lens 𝒱" and
vwb_coregion: "vwb_lens 𝒞" and
indep_region_coregion: "𝒱 ⨝ 𝒞" and
bij_region_coregion: "bij_lens (𝒱 +⇩L 𝒞)"
begin
sublocale psym_lens
proof (rule psym_lens.intro)
show "mwb_lens 𝒱"
by (simp add: vwb_region)
show "mwb_lens 𝒞"
by (simp add: vwb_coregion)
show "𝒱 ⨝ 𝒞"
using indep_region_coregion by blast
show "pbij_lens (𝒱 +⇩L 𝒞)"
by (simp add: bij_region_coregion)
qed
lemma put_region_coregion_cover:
"put⇘𝒱⇙ (put⇘𝒞⇙ s⇩1 (get⇘𝒞⇙ s⇩2)) (get⇘𝒱⇙ s⇩2) = s⇩2"
proof -
have "put⇘𝒱⇙ (put⇘𝒞⇙ s⇩1 (get⇘𝒞⇙ s⇩2)) (get⇘𝒱⇙ s⇩2) = put⇘𝒱 +⇩L 𝒞⇙ s⇩1 (get⇘𝒱 +⇩L 𝒞⇙ s⇩2)"
by (simp add: lens_defs)
also have "... = s⇩2"
by (simp add: bij_region_coregion)
finally show ?thesis .
qed
end
declare sym_lens.vwb_region [simp]
declare sym_lens.vwb_coregion [simp]
declare sym_lens.indep_region_coregion [simp]
lemma sym_lens_psym [simp]: "sym_lens x ⟹ psym_lens x"
by (simp add: psym_lens_def sym_lens.bij_region_coregion)
lemma sym_lens_compl [simp]: "sym_lens a ⟹ sym_lens (-⇩L a)"
apply (simp add: slens_compl_def)
apply (rule sym_lens.intro, simp_all)
using lens_indep_sym sym_lens.indep_region_coregion apply blast
using bij_lens_equiv lens_plus_comm sym_lens_def apply blast
done
end