Theory SpaceTime
theory SpaceTime
imports Main
begin
record 'a Vector =
tdir :: "'a"
xdir :: "'a"
ydir :: "'a"
zdir :: "'a"
record 'a Point =
tval :: "'a"
xval :: "'a"
yval :: "'a"
zval :: "'a"
record 'a Line =
basepoint :: "'a Point"
direction :: "'a Vector"
record 'a Plane =
pbasepoint :: "'a Point"
direction1 :: "'a Vector"
direction2 :: "'a Vector"
record 'a Cone =
vertex :: "'a Point"
slope :: "'a"
class Quantities = linordered_field
class Vectors = Quantities
begin
abbreviation vecZero :: "'a Vector" (‹0›) where
"vecZero ≡ ⦇ tdir = (0::'a), xdir = 0, ydir = 0, zdir = 0 ⦈"
fun vecPlus :: "'a Vector ⇒ 'a Vector ⇒ 'a Vector" (infixr ‹⊕› 100) where
"vecPlus u v = ⦇ tdir = tdir u + tdir v, xdir = xdir u + xdir v,
ydir = ydir u + ydir v, zdir = zdir u + zdir v ⦈"
fun vecMinus :: "'a Vector ⇒ 'a Vector ⇒ 'a Vector" (infixr ‹⊖› 100) where
"vecMinus u v = ⦇ tdir = tdir u - tdir v, xdir = xdir u - xdir v,
ydir = ydir u - ydir v, zdir = zdir u - zdir v ⦈"
fun vecNegate :: "'a Vector ⇒ 'a Vector" (‹~ _›) where
"vecNegate u = ⦇ tdir = uminus (tdir u), xdir = uminus (xdir u),
ydir = uminus (ydir u), zdir = uminus (zdir u) ⦈"
fun innerProd :: "'a Vector ⇒ 'a Vector ⇒ 'a" (infix ‹dot› 50) where
"innerProd u v = (tdir u * tdir v) + (xdir u * xdir v) +
(ydir u * ydir v) + (zdir u * zdir v)"
fun sqrlen :: "'a Vector ⇒ 'a" where "sqrlen u = (u dot u)"
fun minkowskiProd :: "'a Vector ⇒ 'a Vector ⇒ 'a" (infix ‹mdot› 50) where
"minkowskiProd u v = (tdir u * tdir v)
- ((xdir u * xdir v) + (ydir u * ydir v) + (zdir u * zdir v))"
fun mSqrLen :: "'a Vector ⇒ 'a" where "mSqrLen u = (u mdot u)"
fun vecScale :: "'a ⇒ 'a Vector ⇒ 'a Vector" (infix ‹**› 200) where
"vecScale k u = ⦇ tdir = k * tdir u, xdir = k * xdir u, ydir = k * ydir u, zdir = k * zdir u ⦈"
fun orthogonal :: "'a Vector ⇒ 'a Vector ⇒ bool" (infix ‹⊥› 150) where
"orthogonal u v = (u dot v = 0)"
lemma lemVecZeroMinus:
shows "0 ⊖ u = ~ u"
by simp
lemma lemVecSelfMinus:
shows "u ⊖ u = 0"
by simp
lemma lemVecPlusCommute:
shows "u ⊕ v = v ⊕ u"
by (simp add: add.commute)
lemma lemVecPlusAssoc:
shows "u ⊕ (v ⊕ w) = (u ⊕ v) ⊕ w"
by (simp add: add.assoc)
lemma lemVecPlusMinus:
shows "u ⊕ (~ v) = u ⊖ v"
by (simp add: local.add_uminus_conv_diff)
lemma lemDotCommute:
shows "(u dot v) = (v dot u)"
by (simp add: mult.commute)
lemma lemMDotCommute:
shows "(u mdot v) = (v mdot u)"
by (simp add:mult.commute)
lemma lemScaleScale:
shows "a**(b**u) = (a*b)**u"
by (simp add: mult.assoc)
lemma lemScale1:
shows "1 ** u = u"
by simp
lemma lemScale0:
shows "0 ** u = 0"
by simp
lemma lemScaleNeg:
shows "(-k)**u = ~ (k**u)"
by simp
lemma lemScaleOrigin:
shows "k**0 = 0"
by auto
lemma lemScaleOverAdd:
shows "k**(u ⊕ v) = k**u ⊕ k**v"
by (simp add: semiring_normalization_rules(34))
lemma lemAddOverScale:
shows "a**u ⊕ b**u = (a+b)**u"
by (simp add: semiring_normalization_rules(1))
lemma lemScaleInverse:
assumes "k ≠ (0::'a)"
and "v = k**u"
shows "u = (inverse k)**v"
proof -
have "(inverse k)**v = (inverse k * k)**u"
by (simp add: lemScaleScale assms(2) mult.assoc)
thus ?thesis by (metis (lifting) field_inverse assms(1) lemScale1)
qed
lemma lemOrthoSym:
assumes "u ⊥ v"
shows "v ⊥ u"
by (metis assms(1) lemDotCommute orthogonal.simps)
end
class Points = Quantities + Vectors
begin
abbreviation origin :: "'a Point" where
"origin ≡ ⦇ tval = 0, xval = 0, yval = 0, zval = 0 ⦈"
fun vectorJoining :: "'a Point ⇒ 'a Point ⇒ 'a Vector" (‹from _ to _›) where
"vectorJoining p q
= ⦇ tdir = tval q - tval p, xdir = xval q - xval p,
ydir = yval q - yval p, zdir = zval q - zval p ⦈"
fun moveBy :: "'a Point ⇒ 'a Vector ⇒ 'a Point" (infixl ‹↝› 100) where
"moveBy p u
= ⦇ tval = tval p + tdir u, xval = xval p + xdir u,
yval = yval p + ydir u, zval = zval p + zdir u ⦈"
fun positionVector :: "'a Point ⇒ 'a Vector" where
"positionVector p = ⦇ tdir = tval p, xdir = xval p, ydir = yval p, zdir = zval p ⦈"
fun before :: "'a Point ⇒ 'a Point ⇒ bool" (infixr ‹≲› 100) where
"before p q = (tval p < tval q)"
fun after :: "'a Point ⇒ 'a Point ⇒ bool" (infixr ‹≳› 100) where
"after p q = (tval p > tval q)"
fun sametime :: "'a Point ⇒ 'a Point ⇒ bool" (infixr ‹≈› 100) where
"sametime p q = (tval p = tval q)"
lemma lemFromToTo:
shows "(from p to q) ⊕ (from q to r) = (from p to r)"
proof -
have shared: "∀valp valq valr.( valq - valp + (valr - valq) = valr - valp)"
by (metis add_uminus_conv_diff add_diff_cancel
semiring_normalization_rules(24) semiring_normalization_rules(25))
thus ?thesis by auto
qed
lemma lemMoveByMove:
shows "p ↝ u ↝ v = p ↝ (u ⊕ v)"
by (simp add: add.assoc)
lemma lemScaleLinear:
shows "p ↝ a**u ↝ b**v = p ↝ (a**u ⊕ b**v)"
by (simp add: add.assoc)
end
class Lines = Quantities + Vectors + Points
begin
fun onAxisT :: "'a Point ⇒ bool" where
"onAxisT u = ((xval u = 0) ∧ (yval u = 0) ∧ (zval u = 0))"
fun space2 :: "('a Point) ⇒ ('a Point) ⇒ 'a" where
"space2 u v
= (xval u - xval v)*(xval u - xval v)
+ (yval u - yval v)*(yval u - yval v)
+ (zval u - zval v)*(zval u - zval v)"
fun time2 :: "('a Point) ⇒ ('a Point) ⇒ 'a" where
"time2 u v = (tval u - tval v)*(tval u - tval v)"
fun speed :: "('a Point) ⇒ ('a Point) ⇒ 'a" where
"speed u v = (space2 u v / time2 u v)"
fun mkLine :: "'a Point => 'a Vector ⇒ 'a Line" where
"mkLine b d = ⦇ basepoint = b, direction = d ⦈"
fun lineJoining :: "'a Point ⇒ 'a Point ⇒ 'a Line" (‹line joining _ to _›) where
"lineJoining p q = ⦇ basepoint = p, direction = from p to q ⦈"
fun parallel :: "'a Line ⇒ 'a Line ⇒ bool" (‹_ ∥ ›) where
"parallel lineA lineB = ((direction lineA = vecZero) ∨ (direction lineB = vecZero)
∨ (∃k.(k ≠ (0::'a) ∧ direction lineB = k**direction lineA)))"
fun collinear :: "'a Point ⇒ 'a Point ⇒ 'a Point ⇒ bool" where
"collinear p q r = (∃α β. ( (α + β = 1) ∧
positionVector p = α**(positionVector q) ⊕ β**(positionVector r) ))"
fun inLine :: "'a Point ⇒ 'a Line ⇒ bool" where
"inLine p l = collinear p (basepoint l) (basepoint l ↝ direction l)"
fun meets :: "'a Line ⇒ 'a Line ⇒ bool" where
"meets line1 line2 = (∃p.(inLine p line1 ∧ inLine p line2))"
lemma lemParallelReflexive:
shows "lineA ∥ lineA"
proof -
define dir where "dir = direction lineA"
have "(1 ≠ 0) ∧ (dir = 1**dir)" by simp
thus ?thesis by (metis dir_def parallel.simps)
qed
lemma lemParallelSym:
assumes "lineA ∥ lineB"
shows "lineB ∥ lineA"
proof -
have case1: "direction lineA = vecZero ⟶ ?thesis" by auto
have case2: "direction lineB = vecZero ⟶ ?thesis" by auto
{
assume case3: "direction lineA ≠ vecZero ∧ direction lineB ≠ vecZero"
have exists_kab: "∃kab.(kab ≠ (0::'a) ∧ direction lineB = kab**direction lineA)"
by (metis parallel.simps assms(1) case3)
define kab where "kab ≡ (SOME kab.(kab ≠ (0::'a) ∧ direction lineB = kab**direction lineA))"
have kab_props: "kab ≠ 0 ∧ direction lineB = kab**direction lineA"
using exists_kab kab_def
by (rule Hilbert_Choice.exE_some)
define kba where "kba = inverse kab"
have kba_nonzero: "kba ≠ 0" by (metis inverse_zero_imp_zero kab_props kba_def)
have "direction lineA = kba**direction lineB" by (metis kba_def lemScaleInverse kab_props)
hence ?thesis by (metis kba_nonzero parallel.simps)
}
from this have "(direction lineA ≠ vecZero ∧ direction lineB ≠ vecZero) ⟶ ?thesis" by blast
thus ?thesis by (metis case1 case2)
qed
lemma lemParallelTrans:
assumes "lineA ∥ lineB"
and "lineB ∥ lineC"
and "direction lineB ≠ vecZero"
shows "lineA ∥ lineC"
proof -
have case1: "direction lineA = vecZero ⟶ ?thesis" by auto
have case2: "direction lineC = vecZero ⟶ ?thesis" by auto
{
assume case3: "direction lineA ≠ vecZero ∧ direction lineC ≠ vecZero"
have exists_kab: "∃kab.(kab ≠ (0::'a) ∧ direction lineB = kab**direction lineA)"
by (metis parallel.simps assms(1) case3 assms(3))
then obtain kab where kab_props: "kab ≠ 0 ∧ direction lineB = kab**direction lineA" by auto
have exists_kbc: "∃kbc.(kbc ≠ (0::'a) ∧ direction lineC = kbc**direction lineB)"
by (metis parallel.simps assms(2) case3 assms(3))
then obtain kbc where kbc_props: "kbc ≠ 0 ∧ direction lineC = kbc**direction lineB" by auto
define kac where "kac = kbc * kab"
have kac_nonzero: "kac ≠ 0" by (metis kab_props kac_def kbc_props no_zero_divisors)
have "direction lineC = kac**direction lineA"
by (metis kab_props kbc_props kac_def lemScaleScale)
hence ?thesis by (metis kac_nonzero parallel.simps)
}
from this have "(direction lineA ≠ vecZero ∧ direction lineC ≠ vecZero) ⟶ ?thesis" by blast
thus ?thesis by (metis case1 case2)
qed
lemma (in -) lemLineIdentity:
assumes "lineA = ⦇ basepoint = basepoint lineB, direction = direction lineB ⦈"
shows "lineA = lineB"
proof -
have "basepoint lineA = basepoint lineB ∧ direction lineA = direction lineB"
by (simp add: assms(1))
thus ?thesis by simp
qed
lemma lemDirectionJoining:
shows "vectorJoining p (p ↝ v) = v"
proof -
have "∀a b.(a + b - a = b)"
by (metis add_uminus_conv_diff diff_add_cancel semiring_normalization_rules(24))
thus ?thesis by auto
qed
lemma lemDirectionFromTo:
shows "direction (line joining p to (p ↝ dir)) = dir"
proof -
have "direction (line joining p to (p ↝ dir)) = from p to (p ↝ dir)" by simp
thus ?thesis by (metis lemDirectionJoining)
qed
lemma lemLineEndpoint:
shows "q = p ↝ (from p to q)"
proof -
have "∀a b. (b = a + (b - a))"
by (metis diff_add_cancel semiring_normalization_rules(24))
thus ?thesis by auto
qed
lemma lemNullLine:
assumes "direction lineA = vecZero"
and "inLine x lineA"
shows "x = basepoint lineA"
proof -
define bp where "bp = basepoint lineA"
have "collinear x (basepoint lineA) (basepoint lineA ↝ direction lineA)"
by (metis inLine.simps assms(2))
hence "collinear x bp (bp ↝ vecZero)" by (metis bp_def assms(1))
hence "collinear x bp bp" by simp
hence "∃a b.( (a + b = 1) ∧
(positionVector x = a**(positionVector bp) ⊕ b**(positionVector bp)) )"
by (metis collinear.simps)
hence "positionVector x = positionVector bp" by (metis lemScale1 lemAddOverScale)
thus ?thesis by (simp add: bp_def)
qed
lemma lemLineContainsBasepoint:
shows "inLine p (line joining p to q)"
proof -
define linePQ where "linePQ = line joining p to q"
have bp: "basepoint linePQ = p" by (simp add: linePQ_def)
have dir: "direction linePQ = from p to q" by (simp add: linePQ_def)
have endq: "basepoint linePQ ↝ direction linePQ = q" by (metis bp dir lemLineEndpoint)
have "(1 + 0 = 1) ∧ (positionVector p = 1**(positionVector p) ⊕ 0**(positionVector q))"
by auto
hence "collinear p p q" by (metis collinear.simps)
hence "collinear p (basepoint linePQ) (basepoint linePQ ↝ direction linePQ)"
by (metis bp endq)
thus ?thesis by (simp add: linePQ_def)
qed
lemma lemLineContainsEndpoint:
shows "inLine q (line joining p to q)"
proof -
define linePQ where "linePQ = line joining p to q"
have bp: "basepoint linePQ = p" by (simp add: linePQ_def)
have dir: "direction linePQ = from p to q" by (simp add: linePQ_def)
have endq: "basepoint linePQ ↝ direction linePQ = q" by (metis bp dir lemLineEndpoint)
have "(0 + 1 = 1) ∧ (positionVector q = 0**(positionVector p) ⊕ 1**(positionVector q))"
by auto
hence "collinear q p q" by (metis collinear.simps)
hence "collinear q (basepoint linePQ) (basepoint linePQ ↝ direction linePQ)"
by (metis bp endq)
thus ?thesis by (simp add: linePQ_def)
qed
lemma lemDirectionReverse:
shows "from q to p = vecNegate (from p to q)"
by simp
lemma lemParallelJoin:
assumes "line joining p to q ∥ line joining q to r"
shows "line joining p to q ∥ line joining p to r"
proof -
define linePQ where "linePQ = line joining p to q"
define lineQR where "lineQR = line joining q to r"
define linePR where "linePR = line joining p to r"
have case1: "(direction linePQ = vecZero) ⟶ ?thesis" by (simp add: linePQ_def)
have case2: "(direction linePR = vecZero) ⟶ ?thesis" by (simp add: linePR_def)
{
assume case3: "direction linePQ ≠ vecZero ∧ direction linePR ≠ vecZero"
{
assume case3a: "direction lineQR = vecZero"
have "inLine r lineQR" by (metis lemLineContainsEndpoint lineQR_def)
hence "r = basepoint lineQR" by (metis lemNullLine case3a)
hence "r = q" by (simp add: lineQR_def)
hence "linePQ = linePR" by (simp add: linePQ_def linePR_def)
hence ?thesis by (metis lemParallelReflexive linePQ_def linePR_def)
}
from this have rtp3a: "direction lineQR = vecZero ⟶ ?thesis" by blast
{
assume case3b: "direction lineQR ≠ vecZero"
define dirPQ where "dirPQ = from p to q"
have dir_pq: "direction linePQ = dirPQ" by (simp add: linePQ_def dirPQ_def)
define dirQR where "dirQR = from q to r"
have dir_qr: "direction lineQR = dirQR" by (simp add: lineQR_def dirQR_def)
have exists_k: "∃k.(k ≠ 0 ∧ direction lineQR = k**direction linePQ)"
by (metis linePQ_def lineQR_def assms(1) parallel.simps case3b case3)
then obtain k where k_props: "k ≠ 0 ∧ dirQR= k**dirPQ" by (metis dir_pq dir_qr)
define scalar where "scalar = 1+k"
have "q = p ↝ dirPQ ∧ r = q ↝ dirQR" by (metis lemLineEndpoint dirPQ_def dirQR_def)
hence "r = p ↝ dirPQ ↝ (k**dirPQ)" by (metis k_props)
hence scalarPR: "r = p ↝ scalar**dirPQ"
by (metis lemScaleLinear lemScale1 lemAddOverScale scalar_def)
{
assume scalar0: "scalar = 0"
have "r = p" by (simp add: lemScale0 scalarPR scalar0)
hence "direction linePR = vecZero" by (simp add: linePR_def)
hence "False" by (metis case3)
}
from this have scalar_nonzero: "scalar ≠ 0" by blast
have "linePR = line joining p to (p ↝ scalar**dirPQ)"
by (simp add: linePR_def scalarPR)
hence "direction linePR = scalar**dirPQ" by (metis lemDirectionFromTo)
hence scalar_props: "scalar ≠ 0 ∧ direction linePR = scalar**direction linePQ"
by (metis scalar_nonzero dir_pq)
hence ?thesis by (metis parallel.simps linePR_def linePQ_def)
}
from this have "direction lineQR ≠ vecZero ⟶ ?thesis" by blast
hence ?thesis by (metis rtp3a)
}
from this have "(direction linePQ ≠ vecZero ∧ direction linePR ≠ vecZero) ⟶ ?thesis" by blast
thus ?thesis by (metis case1 case2)
qed
lemma lemDirectionCollinear:
shows "collinear u v (v ↝ d) ⟷ (∃β.(from u to v = (-β)**d))"
proof -
have basic1: "∀u v.(positionVector (u ↝ v)) = (positionVector u) ⊕ v" by simp
have basic2: "∀u v w.(u = v ⊕ w ⟶ v ⊖ u = vecNegate w )"
apply auto
by (metis add_uminus_conv_diff diff_add_cancel minus_add
semiring_normalization_rules(24)) +
have basic3: "∀u v.(from u to v = positionVector v ⊖ positionVector u)" by simp
have basic4: "∀u v w.(v ⊖ u = vecNegate w ⟶ u = v ⊕ w)"
apply auto
by (metis add_uminus_conv_diff diff_add_cancel lemScale1 mult.left_neutral
semiring_normalization_rules(24) vecScale.simps)
{
assume assm: "collinear u v (v ↝ d)"
have "∃α β. ( (α + β = 1) ∧
positionVector u = α**(positionVector v) ⊕ β**(positionVector (v ↝ d)) )"
by (metis assm collinear.simps)
then obtain α β where props: "(α + β = 1) ∧
positionVector u = α**(positionVector v) ⊕ β**(positionVector (v ↝ d))" by auto
hence "positionVector u = 1**(positionVector v) ⊕ β**d"
by (metis basic1 lemScaleOverAdd lemVecPlusAssoc lemAddOverScale props)
hence "positionVector u = positionVector v ⊕ β**d" by (metis lemScale1)
hence "positionVector v ⊖ positionVector u = (-β)**d" by (metis basic2 lemScaleNeg)
hence "∃β.(from u to v = (-β)**d)" by (metis basic3)
}
from this have fwd: "collinear u v (v ↝ d) ⟶ (∃β.(from u to v = (-β)**d))" by blast
{
assume "∃β.(from u to v = (-β)**d)"
then obtain β where assm: "from u to v = (-β)**d" by auto
define α where "α = 1 - β"
have αβ_sum: "α + β = 1" by (simp add: α_def)
have "from u to v = vecNegate (β**d)" by (metis assm lemScaleNeg)
hence "positionVector v ⊖ positionVector u = vecNegate (β**d)" by auto
hence "positionVector u = positionVector v ⊕ β**d" by (metis basic4)
hence "positionVector u = 1**(positionVector v) ⊕ β**d"
by (metis lemScale1)
hence "(α + β = 1) ∧
positionVector u = α**(positionVector v) ⊕ β**(positionVector (v ↝ d))"
by (metis αβ_sum basic1 lemScaleOverAdd lemVecPlusAssoc lemAddOverScale)
hence "collinear u v (v ↝ d)" by auto
}
from this have "(∃β.(from u to v = (-β)**d)) ⟶ collinear u v (v ↝ d)" by blast
thus ?thesis by (metis fwd)
qed
lemma lemParallelNotMeet:
assumes "lineA ∥ lineB"
and "direction lineA ≠ vecZero"
and "direction lineB ≠ vecZero"
and "inLine x lineA"
and "¬(inLine x lineB)"
shows "¬(meets lineA lineB)"
proof -
have basic: "∀p q v a.(from p to q = a**v ⟶ from q to p = (-a)**v)"
apply (simp add: lemScaleNeg) by (metis minus_diff_eq)
define bpA where "bpA = basepoint lineA"
define dirA where "dirA = direction lineA"
define bpB where "bpB = basepoint lineB"
define dirB where "dirB = direction lineB"
have "lineB ∥ lineA" by (metis lemParallelSym assms(1))
hence exists_kab: "∃kab.(kab ≠ (0::'a) ∧ direction lineA = kab**direction lineB)"
by (metis parallel.simps assms(2) assms(3))
then obtain kab where kab_props: "kab ≠ 0 ∧ dirA = kab**dirB" by (metis dirA_def dirB_def)
have "collinear x bpA (bpA ↝ dirA)" by (metis assms(4) inLine.simps bpA_def dirA_def)
then obtain β where "from x to bpA = (-β)**dirA" by (metis lemDirectionCollinear)
hence x_to_bpA: "from x to bpA = ((-β)*kab)**dirB" by (metis lemScaleScale kab_props)
{
assume converse: "meets lineA lineB"
have "∃p.(inLine p lineA ∧ inLine p lineB)" by (metis converse meets.simps)
then obtain p where p_in_AB: "inLine p lineA ∧ inLine p lineB" by auto
have "collinear p bpA (bpA ↝ dirA)" by (metis p_in_AB inLine.simps bpA_def dirA_def)
then obtain βA where "from p to bpA = (-βA)**dirA" by (metis lemDirectionCollinear)
hence "from bpA to p = (βA)**dirA" by (metis basic minus_minus)
hence bpA_to_p: "from bpA to p = (βA*kab)**dirB" by (metis lemScaleScale kab_props)
have "collinear p bpB (bpB ↝ dirB)" by (metis p_in_AB inLine.simps bpB_def dirB_def)
then obtain βB where p_to_bpB: "from p to bpB = (-βB)**dirB" by (metis lemDirectionCollinear)
define γ where "γ = -((-β)*kab + (βA*kab) + (-βB))"
have x_to_bpB: "(from x to bpA) ⊕ (from bpA to p) ⊕ (from p to bpB) = (from x to bpB)"
by (metis lemFromToTo)
hence "from x to bpB = ((-β)*kab)**dirB ⊕ (βA*kab)**dirB ⊕ (-βB)**dirB"
by (metis x_to_bpA bpA_to_p p_to_bpB)
hence "from x to bpB = (-γ)**dirB"
by (metis lemAddOverScale add.assoc γ_def minus_minus)
hence "collinear x bpB (bpB ↝ dirB)" by (metis lemDirectionCollinear)
hence "inLine x lineB" by (metis inLine.simps bpB_def dirB_def)
}
from this have "meets lineA lineB ⟶ inLine x lineB" by blast
thus ?thesis by (metis assms(5))
qed
lemma lemAxisIsLine:
assumes "onAxisT x"
and "onAxisT y"
and "onAxisT z"
and "x ≠ y"
and "y ≠ z"
and "z ≠ x"
shows "collinear x y z"
proof -
define ratio where "ratio = -(tval y - tval x) / (tval z - tval y)"
have x_onAxis: "xval x = 0 ∧ yval x = 0 ∧ zval x = 0" by (metis assms(1) onAxisT.simps)
have y_onAxis: "xval y = 0 ∧ yval y = 0 ∧ zval y = 0" by (metis assms(2) onAxisT.simps)
have z_onAxis: "xval z = 0 ∧ yval z = 0 ∧ zval z = 0" by (metis assms(3) onAxisT.simps)
have "tval z - tval y = 0 ⟶ z = y" by (simp add: z_onAxis y_onAxis)
hence "tval z ≠ tval y" by (metis assms(5) eq_iff_diff_eq_0)
hence tvalyz_nonzero: "tval z - tval y ≠ 0" by (metis eq_iff_diff_eq_0)
have x_to_y: "from x to y = ⦇ tdir = tval y - tval x, xdir = 0, ydir = 0, zdir = 0 ⦈"
by (simp add: x_onAxis y_onAxis)
have y_to_z: "from y to z = ⦇ tdir = tval z - tval y, xdir = 0, ydir = 0, zdir = 0 ⦈"
by (simp add:y_onAxis z_onAxis)
have "from x to y = (-ratio)**(from y to z)"
apply (simp add: x_to_y y_to_z ratio_def)
by (metis diff_self eq_divide_imp minus_diff_eq mult_eq_0_iff
tvalyz_nonzero x_onAxis y_onAxis z_onAxis)
hence "collinear x y (y ↝ (from y to z))" by (metis lemDirectionCollinear)
thus ?thesis by (metis lemLineEndpoint)
qed
lemma lemSpace2Sym:
shows "space2 x y = space2 y x"
proof -
define xsep where "xsep = xval x - xval y"
define ysep where "ysep = yval x - yval y"
define zsep where "zsep = zval x - zval y"
have spacexy: "space2 x y = (xsep*xsep) + (ysep*ysep) + (zsep*zsep)"
by (simp add: xsep_def ysep_def zsep_def)
have spaceyx: "space2 y x = (-xsep)*(-xsep) + (-ysep)*(-ysep) + (-zsep)*(-zsep)"
by (simp add: xsep_def ysep_def zsep_def)
thus ?thesis by (metis spacexy diff_0_right minus_diff_eq minus_mult_left minus_mult_right)
qed
lemma lemTime2Sym:
shows "time2 x y = time2 y x"
proof -
define tsep where "tsep = tval x - tval y"
have timexy: "time2 x y = tsep*tsep"
by (simp add: tsep_def)
have timeyx: "time2 y x = (-tsep)*(-tsep)"
by (simp add: tsep_def)
thus ?thesis by (metis timexy diff_0_right minus_diff_eq minus_mult_left minus_mult_right)
qed
end
class Planes = Quantities + Lines
begin
fun mkPlane :: "'a Point ⇒ 'a Vector ⇒ 'a Vector ⇒ 'a Plane" where
"mkPlane b d1 d2 = ⦇ pbasepoint = b, direction1 = d1, direction2 = d2 ⦈"
fun coplanar :: "'a Point ⇒ 'a Point ⇒ 'a Point ⇒ 'a Point ⇒ bool" where
"coplanar e x y z
= (∃α β γ. ( (α + β + γ = 1) ∧
positionVector e
= (α**(positionVector x) ⊕ β**(positionVector y) ⊕ γ**(positionVector z) )))"
fun inPlane :: "'a Point ⇒ 'a Plane ⇒ bool" where
"inPlane e pl = coplanar e (pbasepoint pl) (pbasepoint pl ↝ direction1 pl)
(pbasepoint pl ↝ direction2 pl)"
fun samePlane :: "'a Plane ⇒ 'a Plane ⇒ bool" where
"samePlane pl pl' = (inPlane (pbasepoint pl) pl' ∧
inPlane (pbasepoint pl ↝ direction1 pl) pl' ∧
inPlane (pbasepoint pl ↝ direction2 pl) pl')"
lemma lemPlaneContainsBasePoint:
shows "inPlane (pbasepoint pl) pl"
proof -
define α where "α = (1::'a)"
define β where "β = (0::'a)"
define γ where "γ = (0::'a)"
have rtp1: "α + β + γ = 1" by (simp add: α_def β_def γ_def)
define e where "e = pbasepoint pl"
define x where "x = pbasepoint pl"
define y where "y = pbasepoint pl ↝ direction1 pl"
define z where "z = pbasepoint pl ↝ direction2 pl"
have rtp2: "positionVector e = α**(positionVector x)
⊕ β**(positionVector y) ⊕ γ**(positionVector z)"
by (simp add: e_def x_def α_def β_def γ_def)
have sameplane: "coplanar e x y z" by (metis coplanar.simps rtp1 rtp2)
hence "coplanar e (pbasepoint pl) (pbasepoint pl ↝ direction1 pl)
(pbasepoint pl ↝ direction2 pl)"
by (simp add: x_def y_def z_def)
hence "inPlane e pl" by simp
thus ?thesis by (simp add: e_def)
qed
end
class Cones = Quantities + Lines + Planes +
fixes
tangentPlane :: "'a Point ⇒ 'a Cone ⇒ 'a Plane"
assumes
AxTangentBase: "pbasepoint (tangentPlane e cone) = e"
and
AxTangentVertex: "inPlane (vertex cone) (tangentPlane e cone)"
and
AxConeTangent: "(onCone e cone) ⟶
((inPlane pt (tangentPlane e cone) ∧ onCone pt cone)
⟷ collinear (vertex cone) e pt)"
and
AxParallelCones: "(onCone e econe ∧ e ≠ vertex econe ∧ onCone f fcone ∧ f ≠ vertex fcone
∧ inPlane f (tangentPlane e econe))
⟶ (samePlane (tangentPlane e econe) (tangentPlane f fcone)
∧ ((lineJoining (vertex econe) e) ∥ (lineJoining (vertex fcone) f)))"
and
AxParallelConesE: "outsideCone f cone
⟶ (∃e.(onCone e cone ∧ e ≠ vertex cone ∧ inPlane f (tangentPlane e cone)))"
and
AxSlopedLineInVerticalPlane: "⟦onAxisT e; onAxisT f; e ≠ f; ¬(onAxisT g)⟧
⟹ (∀s.( ∃p . (collinear e g p ∧ (space2 p f = (s*s)*time2 p f))))"
begin
fun onCone :: "'a Point ⇒ 'a Cone ⇒ bool" where
"onCone p cone
= (space2 (vertex cone) p = (slope cone * slope cone) * time2 (vertex cone) p )"
fun insideCone :: "'a Point ⇒ 'a Cone ⇒ bool" where
"insideCone p cone
= (space2 (vertex cone) p < (slope cone * slope cone) * time2 (vertex cone) p)"
fun outsideCone :: "'a Point ⇒ 'a Cone ⇒ bool" where
"outsideCone p cone
= (space2 (vertex cone) p > (slope cone * slope cone) * time2 (vertex cone) p)"
fun mkCone :: "'a Point ⇒ 'a ⇒ 'a Cone" where
"mkCone v s = ⦇ vertex = v, slope = s ⦈"
lemma lemVertexOnCone:
shows "onCone (vertex cone) cone"
by simp
lemma lemOutsideNotOnCone:
assumes "outsideCone f cone"
shows "¬ (onCone f cone)"
by (metis assms less_irrefl onCone.simps outsideCone.simps)
end
class SpaceTime = Quantities + Vectors + Points + Lines + Planes + Cones
end