Theory First_Welfare_Theorem.Syntax
section ‹ Introducing Syntax ›
text ‹ Syntax, abbreviations and type-synonyms ›
theory Syntax
imports Main
begin
type_synonym 'a relation = "('a × 'a) set"
abbreviation gen_weak_stx :: "'a ⇒ 'a relation ⇒ 'a ⇒ bool"
(‹_ ≽[_] _› [51,100,51] 60)
where
"x ≽[P] y ≡ (x, y) ∈ P"
abbreviation gen_indif_stx :: "'a ⇒ 'a relation ⇒ 'a ⇒ bool"
(‹_ ≈[_] _› [51,100,51] 60)
where
"x ≈[P] y ≡ x ≽[P] y ∧ y ≽[P] x "
abbreviation gen_strc_stx :: "'a ⇒ 'a relation ⇒ 'a ⇒ bool"
(‹_ ≻[_] _› [51,100,51] 60)
where
"x ≻[P] y ≡ x ≽[P] y ∧ ¬y ≽[P] x "
end