Theory TopoS_ENF
theory TopoS_ENF
imports Main TopoS_Interface "Lib/TopoS_Util" TopoS_withOffendingFlows
begin
section‹Special Structures of Security Invariants›
text ‹Security Invariants may have a common structure:
If the function @{term "sinvar"} is predicate which starts with ‹∀ (v⇩1, v⇩2) ∈ edges G. …›,
we call this the all edges normal form (ENF).
We found that this form has some nice properties.
Also, locale instantiation is easier in ENF with the help of the following lemmata.›
subsection ‹Simple Edges Normal Form (ENF)›
context SecurityInvariant_withOffendingFlows
begin
definition sinvar_all_edges_normal_form :: "('a ⇒ 'a ⇒ bool) ⇒ bool" where
"sinvar_all_edges_normal_form P ≡ ∀ G nP. sinvar G nP = (∀ (e1, e2)∈ edges G. P (nP e1) (nP e2))"
text‹reflexivity is needed for convenience. If a security invariant is not reflexive, that means that all nodes with the default
parameter ‹⊥› are not allowed to communicate with each other. Non-reflexivity is possible, but requires more work.›
definition ENF_refl :: "('a ⇒ 'a ⇒ bool) ⇒ bool" where
"ENF_refl P ≡ sinvar_all_edges_normal_form P ∧ (∀ p1. P p1 p1)"
lemma monotonicity_sinvar_mono: "sinvar_all_edges_normal_form P ⟹ sinvar_mono"
unfolding sinvar_all_edges_normal_form_def sinvar_mono_def
by auto
end
subsubsection ‹Offending Flows›
context SecurityInvariant_withOffendingFlows
begin
text‹The insight: for all edges in the members of the offending flows, @{term "¬ P"} holds.›
lemma ENF_offending_imp_not_P:
assumes "sinvar_all_edges_normal_form P" "F ∈ set_offending_flows G nP" "(e1, e2) ∈ F"
shows "¬ P (nP e1) (nP e2)"
using assms
unfolding sinvar_all_edges_normal_form_def set_offending_flows_def is_offending_flows_min_set_def is_offending_flows_def
by (fastforce simp: graph_ops)
text‹Hence, the members of @{const set_offending_flows} must look as follows.›
lemma ENF_offending_set_P_representation:
assumes "sinvar_all_edges_normal_form P" "F ∈ set_offending_flows G nP"
shows "F = {(e1,e2). (e1, e2) ∈ edges G ∧ ¬ P (nP e1) (nP e2)}" (is "F = ?E")
proof -
{ fix a b
assume "(a, b) ∈ F"
hence "(a, b) ∈ ?E"
using assms
by (auto simp: set_offending_flows_def ENF_offending_imp_not_P)
}
moreover
{ fix x
assume "x ∈ ?E"
hence "x ∈ F"
using assms
unfolding sinvar_all_edges_normal_form_def set_offending_flows_def is_offending_flows_min_set_def
by (fastforce simp: is_offending_flows_def graph_ops)
}
ultimately show ?thesis
by blast
qed
text‹We can show left to right of the desired representation of @{const set_offending_flows}›
lemma ENF_offending_subseteq_lhs:
assumes "sinvar_all_edges_normal_form P"
shows "set_offending_flows G nP ⊆ { {(e1,e2). (e1, e2) ∈ edges G ∧ ¬ P (nP e1) (nP e2)} }"
using assms
by (force simp: ENF_offending_set_P_representation)
text‹if @{const set_offending_flows} is not empty, we have the other direction.›
lemma ENF_offending_not_empty_imp_ENF_offending_subseteq_rhs:
assumes "sinvar_all_edges_normal_form P" "set_offending_flows G nP ≠ {}"
shows "{ {(e1,e2) ∈ edges G. ¬ P (nP e1) (nP e2)} } ⊆ set_offending_flows G nP"
using assms ENF_offending_set_P_representation
by blast
lemma ENF_notevalmodel_imp_offending_not_empty:
"sinvar_all_edges_normal_form P ⟹ ¬ sinvar G nP ⟹ set_offending_flows G nP ≠ {}"
proof -
assume enf: "sinvar_all_edges_normal_form P"
and ns: "¬ sinvar G nP"
{
let ?F'="{(e1,e2) ∈ (edges G). ¬P (nP e1) (nP e2)}"
from enf have ENF_notevalmodel_offending_imp_ex_offending_min:
"⋀F. is_offending_flows F G nP ⟹ F ⊆ edges G ⟹
∃F'. F' ⊆ edges G ∧ is_offending_flows_min_set F' G nP"
unfolding sinvar_all_edges_normal_form_def is_offending_flows_min_set_def is_offending_flows_def
by (-) (rule exI[where x="?F'"], fastforce simp: graph_ops)
from enf ns have "∃F. F ⊆ (edges G) ∧ is_offending_flows F G nP"
unfolding sinvar_all_edges_normal_form_def is_offending_flows_def
by (-) (rule exI[where x="?F'"], fastforce simp: graph_ops)
from enf ns this ENF_notevalmodel_offending_imp_ex_offending_min have ENF_notevalmodel_imp_ex_offending_min:
"∃F. F ⊆ edges G ∧ is_offending_flows_min_set F G nP" by blast
} note ENF_notevalmodel_imp_ex_offending_min=this
from ENF_notevalmodel_imp_ex_offending_min show "set_offending_flows G nP ≠ {}" using set_offending_flows_def by simp
qed
lemma ENF_offending_case1:
"⟦ sinvar_all_edges_normal_form P; ¬ sinvar G nP ⟧ ⟹
{ {(e1,e2). (e1, e2) ∈ (edges G) ∧ ¬ P (nP e1) (nP e2)} } = set_offending_flows G nP"
apply(rule)
apply(frule ENF_notevalmodel_imp_offending_not_empty, simp)
apply(rule ENF_offending_not_empty_imp_ENF_offending_subseteq_rhs, simp)
apply simp
apply(rule ENF_offending_subseteq_lhs)
apply simp
done
lemma ENF_offending_case2:
"⟦ sinvar_all_edges_normal_form P; sinvar G nP ⟧ ⟹
{} = set_offending_flows G nP"
apply(drule sinvar_no_offending[of G nP])
apply simp
done
theorem ENF_offending_set:
"⟦ sinvar_all_edges_normal_form P ⟧ ⟹
set_offending_flows G nP = (if sinvar G nP then
{}
else
{ {(e1,e2). (e1, e2) ∈ edges G ∧ ¬ P (nP e1) (nP e2)} })"
by(simp add: ENF_offending_case1 ENF_offending_case2)
end
subsubsection ‹Lemmata›
lemma (in SecurityInvariant_withOffendingFlows) ENF_offending_members:
"⟦ ¬ sinvar G nP; sinvar_all_edges_normal_form P; f ∈ set_offending_flows G nP⟧ ⟹
f ⊆ (edges G) ∧ (∀ (e1, e2)∈ f. ¬ P (nP e1) (nP e2))"
by(auto simp add: ENF_offending_set)
subsubsection ‹Instance Helper›
lemma (in SecurityInvariant_withOffendingFlows) ENF_refl_not_offedning:
"⟦ ¬ sinvar G nP; f ∈ set_offending_flows G nP;
ENF_refl P⟧ ⟹
∀(e1,e2) ∈ f. e1 ≠ e2"
proof -
assume a_not_eval: "¬ sinvar G nP"
and a_enf_refl: "ENF_refl P"
and a_offedning: "f ∈ set_offending_flows G nP"
from a_enf_refl have a_enf: "sinvar_all_edges_normal_form P" using ENF_refl_def by simp
hence a_ENF: "⋀ G nP. sinvar G nP = (∀ (e1, e2) ∈ edges G. P (nP e1) (nP e2))" using sinvar_all_edges_normal_form_def by simp
from a_enf_refl ENF_refl_def have a_refl: "∀ (e1,e1) ∈ f. P (nP e1) (nP e1)" by simp
from ENF_offending_members[OF a_not_eval a_enf a_offedning] have "∀ (e1, e2) ∈ f. ¬ P (nP e1) (nP e2)" by fast
from this a_refl show "∀(e1,e2) ∈ f. e1 ≠ e2" by fast
qed
lemma (in SecurityInvariant_withOffendingFlows) ENF_default_update_fst:
fixes "default_node_properties" :: "'a" (‹⊥›)
assumes modelInv: "¬ sinvar G nP"
and ENFdef: "sinvar_all_edges_normal_form P"
and secdef: "∀ (nP::'v ⇒ 'a) e1 e2. ¬ (P (nP e1) (nP e2)) ⟶ ¬ (P ⊥ (nP e2))"
shows
"¬ (∀ (e1, e2) ∈ edges G. P ((nP(i := ⊥)) e1) (nP e2))"
proof -
from ENFdef have ENF: "⋀ G nP. sinvar G nP = (∀ (e1, e2)∈ edges G. P (nP e1) (nP e2))"
using sinvar_all_edges_normal_form_def by simp
from modelInv ENF have modelInv': "¬ (∀ (e1, e2)∈ edges G. P (nP e1) (nP e2))" by simp
from this secdef have modelInv'': "¬ (∀ (e1, e2)∈ edges G. P ⊥ (nP e2))" by blast
have simpUpdateI: "⋀ e1 e2. ¬ P (nP e1) (nP e2) ⟹ ¬ P ⊥ (nP e2) ⟹ ¬ P ((nP(i := ⊥)) e1) (nP e2)" by simp
hence "⋀ X. ∃(e1,e2) ∈ X. ¬ P (nP e1) (nP e2) ⟹ ∃(e1,e2) ∈ X.¬ P ⊥ (nP e2) ⟹ ∃(e1,e2) ∈ X.¬ P ((nP(i := ⊥)) e1) (nP e2)"
using secdef by blast
from this modelInv' modelInv'' show "¬ (∀ (e1, e2) ∈ edges G. P ((nP(i := ⊥)) e1) (nP e2))" by blast
qed
lemma (in SecurityInvariant_withOffendingFlows)
fixes "default_node_properties" :: "'a" (‹⊥›)
shows "¬ sinvar G nP ⟹ sinvar_all_edges_normal_form P ⟹
(∀ (nP::'v ⇒ 'a) e1 e2. ¬ (P (nP e1) (nP e2)) ⟶ ¬ (P ⊥ (nP e2))) ⟹
(∀ (nP::'v ⇒ 'a) e1 e2. ¬ (P (nP e1) (nP e2)) ⟶ ¬ (P (nP e1) ⊥)) ⟹
(∀ (nP::'v ⇒ 'a) e1 e2. ¬ P ⊥ ⊥)
⟹ ¬ sinvar G (nP(i := ⊥))"
proof -
assume a1: "¬ sinvar G nP"
and a2d: "sinvar_all_edges_normal_form P"
and a3: "∀ (nP::'v ⇒ 'a) e1 e2. ¬ (P (nP e1) (nP e2)) ⟶ ¬ (P ⊥ (nP e2))"
and a4: "∀ (nP::'v ⇒ 'a) e1 e2. ¬ (P (nP e1) (nP e2)) ⟶ ¬ (P (nP e1) ⊥)"
and a5: "∀ (nP::'v ⇒ 'a) e1 e2. ¬ P ⊥ ⊥"
from a2d have a2: "⋀ G nP. sinvar G nP = (∀ (e1, e2) ∈ edges G. P (nP e1) (nP e2))"
using sinvar_all_edges_normal_form_def by simp
from ENF_default_update_fst[OF a1 a2d] a3 have subgoal1: "¬ (∀ (e1, e2) ∈ edges G. P ((nP(i := ⊥)) e1) (nP e2))" by blast
let ?nP' = "(nP(i := ⊥))"
from subgoal1 have "∃ (e1, e2) ∈ edges G. ¬ P (?nP' e1) (nP e2)" by blast
from this obtain e11 e21 where s1cond: "(e11, e21) ∈ edges G ∧ ¬ P (?nP' e11) (nP e21)" by blast
from s1cond have "i ≠ e11 ⟹ ¬ P (nP e11) (nP e21)" by simp
from s1cond have "e11 ≠ e21 ⟹ ¬ P (?nP' e11) (?nP' e21)"
apply simp
apply(rule conjI)
apply blast
apply(insert a4)
by force
from s1cond a4 fun_upd_apply have ex1: "e11 ≠ e21 ⟹ ¬ P (?nP' e11) (?nP' e21)" by metis
from s1cond a5 have ex2: "e11 = e21 ⟹ ¬ P (?nP' e11) (?nP' e21)" by auto
from ex1 ex2 s1cond have "∃ (e1, e2) ∈ edges G. ¬ P (?nP' e1) (?nP' e2)" by blast
hence "¬ (∀ (e1, e2) ∈ edges G. P ((nP(i := ⊥)) e1) ((nP(i := ⊥)) e2))" by fast
from this a2 show "¬ sinvar G (nP(i := ⊥))" by presburger
qed
lemma (in SecurityInvariant_withOffendingFlows) ENF_fsts_refl_instance:
fixes "default_node_properties" :: "'a" (‹⊥›)
assumes a_enf_refl: "ENF_refl P"
and a3: "∀ (nP::'v ⇒ 'a) e1 e2. ¬ (P (nP e1) (nP e2)) ⟶ ¬ (P ⊥ (nP e2))"
and a_offending: "f ∈ set_offending_flows G nP"
and a_i_fsts: "i ∈ fst ` f"
shows
"¬ sinvar G (nP(i := ⊥))"
proof -
from a_offending have a_not_eval: "¬ sinvar G nP" by (metis equals0D sinvar_no_offending)
from valid_without_offending_flows[OF a_offending] have a_offending_rm: "sinvar (delete_edges G f) nP" .
from a_enf_refl have a_enf: "sinvar_all_edges_normal_form P" using ENF_refl_def by simp
hence a2: "⋀ G nP. sinvar G nP = (∀ (e1, e2) ∈ edges G. P (nP e1) (nP e2))" using sinvar_all_edges_normal_form_def by simp
from ENF_offending_members[OF a_not_eval a_enf a_offending] have a_f_3_in_f: "⋀ e1 e2. (e1, e2) ∈ f ⟹ ¬ P (nP e1) (nP e2)" by fast
let ?nP' = "(nP(i := ⊥))"
from offending_not_empty[OF a_offending] ENF_offending_members[OF a_not_eval a_enf a_offending] a_i_fsts hd_in_set
obtain e1 e2 where e1e2cond: "(e1, e2) ∈ f ∧ e1 = i" by force
from conjunct1[OF e1e2cond] a_f_3_in_f have e1e2notP: "¬ P (nP e1) (nP e2)" by simp
from this a3 have "¬ P ⊥ (nP e2)" by simp
from this e1e2notP have e1e2subgoal1: "¬ P (?nP' e1) (nP e2)" by simp
from ENF_refl_not_offedning[OF a_not_eval a_offending a_enf_refl] conjunct1[OF e1e2cond] have ENF_refl: "e1 ≠ e2" by fast
from e1e2subgoal1 have "e1 ≠ e2 ⟹ ¬ P (?nP' e1) (?nP' e2)"
apply simp
apply(rule conjI)
apply blast
apply(insert conjunct2[OF e1e2cond])
by simp
from this ENF_refl ENF_offending_members[OF a_not_eval a_enf a_offending] conjunct1[OF e1e2cond] have
"∃ (e1, e2) ∈ edges G. ¬ P (?nP' e1) (?nP' e2)" by blast
hence "¬ (∀ (e1, e2) ∈ edges G. P ((nP(i := ⊥)) e1) ((nP(i := ⊥)) e2))" by fast
from this a2 show "¬ sinvar G (nP(i := ⊥))" by presburger
qed
lemma (in SecurityInvariant_withOffendingFlows) ENF_snds_refl_instance:
fixes "default_node_properties" :: "'a" (‹⊥›)
assumes a_enf_refl: "ENF_refl P"
and a3: "∀ (nP::'v ⇒ 'a) e1 e2. ¬ (P (nP e1) (nP e2)) ⟶ ¬ (P (nP e1) ⊥)"
and a_offending: "f ∈ set_offending_flows G nP"
and a_i_snds: "i ∈ snd ` f"
shows
"¬ sinvar G (nP(i := ⊥))"
proof -
from a_offending have a_not_eval: "¬ sinvar G nP" by (metis equals0D sinvar_no_offending)
from valid_without_offending_flows[OF a_offending] have a_offending_rm: "sinvar (delete_edges G f) nP" .
from a_enf_refl have a_enf: "sinvar_all_edges_normal_form P" using ENF_refl_def by simp
hence a2: "⋀ G nP. sinvar G nP = (∀ (e1, e2) ∈ edges G. P (nP e1) (nP e2))" using sinvar_all_edges_normal_form_def by simp
from ENF_offending_members[OF a_not_eval a_enf a_offending] have a_f_3_in_f: "⋀ e1 e2. (e1, e2) ∈ f ⟹ ¬ P (nP e1) (nP e2)" by fast
let ?nP' = "(nP(i := ⊥))"
from offending_not_empty[OF a_offending] ENF_offending_members[OF a_not_eval a_enf a_offending] a_i_snds hd_in_set
obtain e1 e2 where e1e2cond: "(e1, e2) ∈ f ∧ e2 = i" by force
from conjunct1[OF e1e2cond] a_f_3_in_f have e1e2notP: "¬ P (nP e1) (nP e2)" by simp
from this a3 have "¬ P (nP e1) ⊥" by auto
from this e1e2notP have e1e2subgoal1: "¬ P (nP e1) (?nP' e2)" by simp
from ENF_refl_not_offedning[OF a_not_eval a_offending a_enf_refl] e1e2cond have ENF_refl: "e1 ≠ e2" by fast
from e1e2subgoal1 have "e1 ≠ e2 ⟹ ¬ P (?nP' e1) (?nP' e2)"
apply simp
apply(rule conjI)
apply(insert conjunct2[OF e1e2cond])
by simp_all
from this ENF_refl e1e2cond ENF_offending_members[OF a_not_eval a_enf a_offending] conjunct1[OF e1e2cond] have
"∃ (e1, e2) ∈ edges G. ¬ P (?nP' e1) (?nP' e2)" by blast
hence "¬ (∀ (e1, e2) ∈ edges G. P ((nP(i := ⊥)) e1) ((nP(i := ⊥)) e2))" by fast
from this a2 show "¬ sinvar G (nP(i := ⊥))" by presburger
qed
subsection ‹edges normal form ENF with sender and receiver names›
definition (in SecurityInvariant_withOffendingFlows) sinvar_all_edges_normal_form_sr :: "('a ⇒ 'v ⇒ 'a ⇒ 'v ⇒ bool) ⇒ bool" where
"sinvar_all_edges_normal_form_sr P ≡ ∀ G nP. sinvar G nP = (∀ (s, r)∈ edges G. P (nP s) s (nP r) r)"
lemma (in SecurityInvariant_withOffendingFlows) ENFsr_monotonicity_sinvar_mono: "⟦ sinvar_all_edges_normal_form_sr P ⟧ ⟹
sinvar_mono"
apply(simp add: sinvar_all_edges_normal_form_sr_def sinvar_mono_def)
by blast
subsubsection ‹Offending Flows:›
theorem (in SecurityInvariant_withOffendingFlows) ENFsr_offending_set:
assumes ENFsr: "sinvar_all_edges_normal_form_sr P"
shows "set_offending_flows G nP = (if sinvar G nP then
{}
else
{ {(s,r). (s, r) ∈ edges G ∧ ¬ P (nP s) s (nP r) r} })" (is "?A = ?B")
proof(cases "sinvar G nP")
case True thus "?A = ?B"
by(simp add: set_offending_flows_def is_offending_flows_min_set_def is_offending_flows_def)
next
case False
from ENFsr have ENFsr_offending_imp_not_P: "⋀ F s r. F ∈ set_offending_flows G nP ⟹ (s, r) ∈ F ⟹ ¬ P (nP s) s (nP r) r"
unfolding sinvar_all_edges_normal_form_sr_def
apply(simp add: set_offending_flows_def is_offending_flows_def is_offending_flows_min_set_def graph_ops)
apply clarify
by fastforce
from ENFsr have ENFsr_offending_set_P_representation:
"⋀ F. F ∈ set_offending_flows G nP ⟹ F = {(s,r). (s, r) ∈ edges G ∧ ¬ P (nP s) s (nP r) r}"
apply -
apply rule
apply rule
apply clarify
apply(rename_tac a b)
apply rule
apply(auto simp add:set_offending_flows_def)[1]
apply(simp add: ENFsr_offending_imp_not_P)
unfolding sinvar_all_edges_normal_form_sr_def
apply(simp add:set_offending_flows_def is_offending_flows_def is_offending_flows_min_set_def graph_ops)
apply clarify
apply(rename_tac a b a1 b1)
apply(blast)
done
from ENFsr False have ENFsr_offending_flows_exist: "set_offending_flows G nP ≠ {}"
apply(simp add: set_offending_flows_def is_offending_flows_min_set_def is_offending_flows_def sinvar_all_edges_normal_form_sr_def
delete_edges_def add_edge_def)
apply(clarify)
apply(rename_tac s r)
apply(rule_tac x="{(s,r). (s,r) ∈ (edges G) ∧ ¬P (nP s) s (nP r) r}" in exI)
apply(simp)
by blast
from ENFsr have ENFsr_offenindg_not_empty_imp_ENF_offending_subseteq_rhs:
"set_offending_flows G nP ≠ {} ⟹
{ {(s,r). (s, r) ∈ edges G ∧ ¬ P (nP s) s (nP r) r} } ⊆ set_offending_flows G nP"
apply -
apply rule
using ENFsr_offending_set_P_representation
by blast
from ENFsr have ENFsr_offending_subseteq_lhs:
"(set_offending_flows G nP) ⊆ { {(s,r). (s, r) ∈ edges G ∧ ¬ P (nP s) s (nP r) r} }"
apply -
apply rule
by(simp add: ENFsr_offending_set_P_representation)
from False ENFsr_offenindg_not_empty_imp_ENF_offending_subseteq_rhs[OF ENFsr_offending_flows_exist] ENFsr_offending_subseteq_lhs show "?A = ?B"
by force
qed
subsection ‹edges normal form not refl ENFnrSR›
definition (in SecurityInvariant_withOffendingFlows) sinvar_all_edges_normal_form_not_refl_SR :: "('a ⇒ 'v ⇒ 'a ⇒ 'v ⇒ bool) ⇒ bool" where
"sinvar_all_edges_normal_form_not_refl_SR P ≡
∀ G nP. sinvar G nP = (∀ (s, r) ∈ edges G. s ≠ r ⟶ P (nP s) s (nP r) r)"
text‹we derive everything from the ENFnrSR form›
lemma (in SecurityInvariant_withOffendingFlows) ENFnrSR_to_ENFsr:
"sinvar_all_edges_normal_form_not_refl_SR P ⟹ sinvar_all_edges_normal_form_sr (λ p1 v1 p2 v2. v1 ≠ v2 ⟶ P p1 v1 p2 v2)"
by(simp add: sinvar_all_edges_normal_form_sr_def sinvar_all_edges_normal_form_not_refl_SR_def)
subsubsection ‹Offending Flows›
theorem (in SecurityInvariant_withOffendingFlows) ENFnrSR_offending_set:
"⟦ sinvar_all_edges_normal_form_not_refl_SR P ⟧ ⟹
set_offending_flows G nP = (if sinvar G nP then
{}
else
{ {(e1,e2). (e1, e2) ∈ edges G ∧ e1 ≠ e2 ∧ ¬ P (nP e1) e1 (nP e2) e2} })"
by(auto dest: ENFnrSR_to_ENFsr simp: ENFsr_offending_set)
subsubsection ‹Instance helper›
lemma (in SecurityInvariant_withOffendingFlows) ENFnrSR_fsts_weakrefl_instance:
fixes "default_node_properties" :: "'a" (‹⊥›)
assumes a_enf: "sinvar_all_edges_normal_form_not_refl_SR P"
and a_weakrefl: "∀ s r. P ⊥ s ⊥ r"
and a_botdefault: "∀ s r. (nP r) ≠ ⊥ ⟶ ¬ P (nP s) s (nP r) r ⟶ ¬ P ⊥ s (nP r) r"
and a_alltobot: "∀ s r. P (nP s) s ⊥ r"
and a_offending: "f ∈ set_offending_flows G nP"
and a_i_fsts: "i ∈ fst` f"
shows
"¬ sinvar G (nP(i := ⊥))"
proof -
from a_offending have a_not_eval: "¬ sinvar G nP" by (metis ex_in_conv sinvar_no_offending)
from valid_without_offending_flows[OF a_offending] have a_offending_rm: "sinvar (delete_edges G f) nP" .
from a_enf have a_enf': "⋀ G nP. sinvar G nP = (∀ (e1, e2)∈ (edges G). e1 ≠ e2 ⟶ P (nP e1) e1 (nP e2) e2)"
using sinvar_all_edges_normal_form_not_refl_SR_def by simp
from ENFnrSR_offending_set[OF a_enf] a_not_eval a_offending have a_f_3_in_f: "⋀ e1 e2. (e1, e2)∈f ⟹ ¬ P (nP e1) e1 (nP e2) e2" by(simp)
from ENFnrSR_offending_set[OF a_enf] a_not_eval a_offending have a_f_3_neq: "⋀ e1 e2. (e1, e2)∈f ⟹ e1 ≠ e2" by simp
let ?nP' = "(nP(i := ⊥))"
from ENFnrSR_offending_set[OF a_enf] a_not_eval a_offending a_i_fsts
obtain e1 e2 where e1e2cond: "(e1, e2) ∈ f ∧ e1 = i" by fastforce
from conjunct1[OF e1e2cond] a_offending have "(e1, e2) ∈ edges G"
by (metis (lifting, no_types) SecurityInvariant_withOffendingFlows.set_offending_flows_def mem_Collect_eq rev_subsetD)
from conjunct1[OF e1e2cond] a_f_3_in_f have e1e2notP: "¬ P (nP e1) e1 (nP e2) e2" by simp
from e1e2notP a_weakrefl have e1ore2neqbot: "(nP e1) ≠ ⊥ ∨ (nP e2) ≠ ⊥" by fastforce
from e1e2notP a_alltobot have "(nP e2) ≠ ⊥" by fastforce
from this e1e2notP a_botdefault have "¬ P ⊥ e1 (nP e2) e2" by simp
from this e1e2notP have e1e2subgoal1: "¬ P (?nP' e1) e1 (nP e2) e2" by auto
from a_f_3_neq e1e2cond have "e2 ≠ e1" by blast
from e1e2subgoal1 have "e1 ≠ e2 ⟹ ¬ P (?nP' e1) e1 (?nP' e2) e2"
apply simp
apply(rule conjI)
apply blast
apply(insert e1e2cond)
by simp
from this ‹e2 ≠ e1› have "¬ P (?nP' e1) e1 (?nP' e2) e2" by simp
from this ‹e2 ≠ e1› ENFnrSR_offending_set[OF a_enf] a_offending ‹(e1, e2) ∈ edges G› have
"∃ (e1, e2)∈(edges G). e2 ≠ e1 ∧ ¬ P (?nP' e1) e1 (?nP' e2) e2" by blast
hence "¬ (∀ (e1, e2)∈(edges G). e2 ≠ e1 ⟶ P ((nP(i := ⊥)) e1) e1 ((nP(i := ⊥)) e2) e2)" by fast
from this a_enf' show "¬ sinvar G (nP(i := ⊥))" by fast
qed
lemma (in SecurityInvariant_withOffendingFlows) ENFnrSR_snds_weakrefl_instance:
fixes "default_node_properties" :: "'a" (‹⊥›)
assumes a_enf: "sinvar_all_edges_normal_form_not_refl_SR P"
and a_weakrefl: "∀ s r. P ⊥ s ⊥ r"
and a_botdefault: "∀ s r. (nP s) ≠ ⊥ ⟶ ¬ P (nP s) s (nP r) r ⟶ ¬ P (nP s) s ⊥ r"
and a_bottoall: "∀ s r. P ⊥ s (nP r) r"
and a_offending: "f ∈ set_offending_flows G nP"
and a_i_snds: "i ∈ snd` f"
shows
"¬ sinvar G (nP(i := ⊥))"
proof -
from a_offending have a_not_eval: "¬ sinvar G nP" by (metis equals0D sinvar_no_offending)
from valid_without_offending_flows[OF a_offending] have a_offending_rm: "sinvar (delete_edges G f) nP" .
from a_enf have a_enf': "⋀ G nP. sinvar G nP = (∀ (e1, e2)∈(edges G). e1 ≠ e2 ⟶ P (nP e1) e1 (nP e2) e2)"
using sinvar_all_edges_normal_form_not_refl_SR_def by simp
from ENFnrSR_offending_set[OF a_enf] a_not_eval a_offending have a_f_3_in_f: "⋀ s r. (s, r)∈f ⟹ ¬ P (nP s) s (nP r) r" by simp
from ENFnrSR_offending_set[OF a_enf] a_not_eval a_offending have a_f_3_neq: "⋀ s r. (s, r)∈f ⟹ s ≠ r" by simp
let ?nP' = "(nP(i := ⊥))"
from ENFnrSR_offending_set[OF a_enf] a_not_eval a_offending a_i_snds
obtain e1 e2 where e1e2cond: "(e1, e2)∈f ∧ e2 = i" by fastforce
from conjunct1[OF e1e2cond] a_offending have "(e1, e2) ∈ edges G"
by (metis (lifting, no_types) SecurityInvariant_withOffendingFlows.set_offending_flows_def mem_Collect_eq rev_subsetD)
from conjunct1[OF e1e2cond] a_f_3_in_f have e1e2notP: "¬ P (nP e1) e1 (nP e2) e2" by simp
from e1e2notP a_weakrefl have e1ore2neqbot: "(nP e1) ≠ ⊥ ∨ (nP e2) ≠ ⊥" by fastforce
from e1e2notP a_bottoall have x1: "(nP e1) ≠ ⊥" by fastforce
from this e1e2notP a_botdefault have x2: "¬ P (nP e1) e1 ⊥ e2" by fast
from this e1e2notP have e1e2subgoal1: "¬ P (nP e1) e1 (?nP' e2) e2" by auto
from a_f_3_neq e1e2cond have "e2 ≠ e1" by blast
from e1e2subgoal1 have "e1 ≠ e2 ⟹ ¬ P (?nP' e1) e1 (?nP' e2) e2" by(simp add: e1e2cond)
from this ‹e2 ≠ e1› ENFnrSR_offending_set[OF a_enf] a_offending ‹(e1, e2) ∈ edges G› have
"∃ (e1, e2)∈(edges G). e2 ≠ e1 ∧ ¬ P (?nP' e1) e1 (?nP' e2) e2" by fastforce
hence "¬ (∀ (e1, e2)∈(edges G). e2 ≠ e1 ⟶ P ((nP(i := ⊥)) e1) e1 ((nP(i := ⊥)) e2) e2)" by fast
from this a_enf' show "¬ sinvar G (nP(i := ⊥))" by fast
qed
subsection ‹edges normal form not refl ENFnr›
definition (in SecurityInvariant_withOffendingFlows) sinvar_all_edges_normal_form_not_refl :: "('a ⇒ 'a ⇒ bool) ⇒ bool" where
"sinvar_all_edges_normal_form_not_refl P ≡ ∀ G nP. sinvar G nP = (∀ (e1, e2) ∈ edges G. e1 ≠ e2 ⟶ P (nP e1) (nP e2))"
text‹we derive everything from the ENFnrSR form›
lemma (in SecurityInvariant_withOffendingFlows) ENFnr_to_ENFnrSR:
"sinvar_all_edges_normal_form_not_refl P ⟹ sinvar_all_edges_normal_form_not_refl_SR (λ v1 _ v2 _. P v1 v2)"
by(simp add: sinvar_all_edges_normal_form_not_refl_def sinvar_all_edges_normal_form_not_refl_SR_def)
subsubsection ‹Offending Flows›
theorem (in SecurityInvariant_withOffendingFlows) ENFnr_offending_set:
"⟦ sinvar_all_edges_normal_form_not_refl P ⟧ ⟹
set_offending_flows G nP = (if sinvar G nP then
{}
else
{ {(e1,e2). (e1, e2) ∈ edges G ∧ e1 ≠ e2 ∧ ¬ P (nP e1) (nP e2)} })"
apply(drule ENFnr_to_ENFnrSR)
by(drule(1) ENFnrSR_offending_set)
subsubsection ‹Instance helper›
lemma (in SecurityInvariant_withOffendingFlows) ENFnr_fsts_weakrefl_instance:
fixes "default_node_properties" :: "'a" (‹⊥›)
assumes a_enf: "sinvar_all_edges_normal_form_not_refl P"
and a_botdefault: "∀ e1 e2. e2 ≠ ⊥ ⟶ ¬ P e1 e2 ⟶ ¬ P ⊥ e2"
and a_alltobot: "∀ e1. P e1 ⊥"
and a_offending: "f ∈ set_offending_flows G nP"
and a_i_fsts: "i ∈ fst` f"
shows
"¬ sinvar G (nP(i := ⊥))"
proof -
from assms show ?thesis
apply -
apply(drule ENFnr_to_ENFnrSR)
apply(drule ENFnrSR_fsts_weakrefl_instance)
by auto
qed
lemma (in SecurityInvariant_withOffendingFlows) ENFnr_snds_weakrefl_instance:
fixes "default_node_properties" :: "'a" (‹⊥›)
assumes a_enf: "sinvar_all_edges_normal_form_not_refl P"
and a_botdefault: "∀ e1 e2. ¬ P e1 e2 ⟶ ¬ P e1 ⊥"
and a_bottoall: "∀ e2. P ⊥ e2"
and a_offending: "f ∈ set_offending_flows G nP"
and a_i_snds: "i ∈ snd` f"
shows
"¬ sinvar G (nP(i := ⊥))"
proof -
from assms show ?thesis
apply -
apply(drule ENFnr_to_ENFnrSR)
apply(drule ENFnrSR_snds_weakrefl_instance)
by auto
qed
lemma (in SecurityInvariant_withOffendingFlows) ENF_weakrefl_instance_FALSE:
fixes "default_node_properties" :: "'a" (‹⊥›)
assumes a_wfG: "wf_graph G"
and a_not_eval: "¬ sinvar G nP"
and a_enf: "sinvar_all_edges_normal_form P"
and a_weakrefl: "P ⊥ ⊥"
and a_botisolated: "⋀ e2. e2 ≠ ⊥ ⟹ ¬ P ⊥ e2"
and a_botdefault: "⋀ e1 e2. e1 ≠ ⊥ ⟹ ¬ P e1 e2 ⟹ ¬ P e1 ⊥"
and a_offending: "f ∈ set_offending_flows G nP"
and a_offending_rm: "sinvar (delete_edges G f) nP"
and a_i_fsts: "i ∈ snd` f"
and a_not_eval_upd: "¬ sinvar G (nP(i := ⊥))"
shows "False"
oops
end