Theory Uint32
chapter ‹Unsigned words of 32 bits›
theory Uint32 imports
Uint_Common
Code_Target_Word
Code_Int_Integer_Conversion
Code_Target_Integer_Bit
begin
section ‹Type definition and primitive operations›
typedef uint32 = ‹UNIV :: 32 word set› ..
global_interpretation uint32: word_type_copy Abs_uint32 Rep_uint32
using type_definition_uint32 by (rule word_type_copy.intro)
setup_lifting type_definition_uint32
declare uint32.of_word_of [code abstype]
declare Quotient_uint32 [transfer_rule]
instantiation uint32 :: ‹{comm_ring_1, semiring_modulo, equal, linorder}›
begin
lift_definition zero_uint32 :: uint32 is 0 .
lift_definition one_uint32 :: uint32 is 1 .
lift_definition plus_uint32 :: ‹uint32 ⇒ uint32 ⇒ uint32› is ‹(+)› .
lift_definition uminus_uint32 :: ‹uint32 ⇒ uint32› is uminus .
lift_definition minus_uint32 :: ‹uint32 ⇒ uint32 ⇒ uint32› is ‹(-)› .
lift_definition times_uint32 :: ‹uint32 ⇒ uint32 ⇒ uint32› is ‹(*)› .
lift_definition divide_uint32 :: ‹uint32 ⇒ uint32 ⇒ uint32› is ‹(div)› .
lift_definition modulo_uint32 :: ‹uint32 ⇒ uint32 ⇒ uint32› is ‹(mod)› .
lift_definition equal_uint32 :: ‹uint32 ⇒ uint32 ⇒ bool› is ‹HOL.equal› .
lift_definition less_eq_uint32 :: ‹uint32 ⇒ uint32 ⇒ bool› is ‹(≤)› .
lift_definition less_uint32 :: ‹uint32 ⇒ uint32 ⇒ bool› is ‹(<)› .
global_interpretation uint32: word_type_copy_ring Abs_uint32 Rep_uint32
by standard (fact zero_uint32.rep_eq one_uint32.rep_eq
plus_uint32.rep_eq uminus_uint32.rep_eq minus_uint32.rep_eq
times_uint32.rep_eq divide_uint32.rep_eq modulo_uint32.rep_eq
equal_uint32.rep_eq less_eq_uint32.rep_eq less_uint32.rep_eq)+
instance proof -
show ‹OFCLASS(uint32, comm_ring_1_class)›
by (rule uint32.of_class_comm_ring_1)
show ‹OFCLASS(uint32, semiring_modulo_class)›
by (fact uint32.of_class_semiring_modulo)
show ‹OFCLASS(uint32, equal_class)›
by (fact uint32.of_class_equal)
show ‹OFCLASS(uint32, linorder_class)›
by (fact uint32.of_class_linorder)
qed
end
instantiation uint32 :: ring_bit_operations
begin
lift_definition bit_uint32 :: ‹uint32 ⇒ nat ⇒ bool› is bit .
lift_definition not_uint32 :: ‹uint32 ⇒ uint32› is ‹Bit_Operations.not› .
lift_definition and_uint32 :: ‹uint32 ⇒ uint32 ⇒ uint32› is ‹Bit_Operations.and› .
lift_definition or_uint32 :: ‹uint32 ⇒ uint32 ⇒ uint32› is ‹Bit_Operations.or› .
lift_definition xor_uint32 :: ‹uint32 ⇒ uint32 ⇒ uint32› is ‹Bit_Operations.xor› .
lift_definition mask_uint32 :: ‹nat ⇒ uint32› is mask .
lift_definition push_bit_uint32 :: ‹nat ⇒ uint32 ⇒ uint32› is push_bit .
lift_definition drop_bit_uint32 :: ‹nat ⇒ uint32 ⇒ uint32› is drop_bit .
lift_definition signed_drop_bit_uint32 :: ‹nat ⇒ uint32 ⇒ uint32› is signed_drop_bit .
lift_definition take_bit_uint32 :: ‹nat ⇒ uint32 ⇒ uint32› is take_bit .
lift_definition set_bit_uint32 :: ‹nat ⇒ uint32 ⇒ uint32› is Bit_Operations.set_bit .
lift_definition unset_bit_uint32 :: ‹nat ⇒ uint32 ⇒ uint32› is unset_bit .
lift_definition flip_bit_uint32 :: ‹nat ⇒ uint32 ⇒ uint32› is flip_bit .
global_interpretation uint32: word_type_copy_bits Abs_uint32 Rep_uint32 signed_drop_bit_uint32
by standard (fact bit_uint32.rep_eq not_uint32.rep_eq and_uint32.rep_eq or_uint32.rep_eq xor_uint32.rep_eq
mask_uint32.rep_eq push_bit_uint32.rep_eq drop_bit_uint32.rep_eq signed_drop_bit_uint32.rep_eq take_bit_uint32.rep_eq
set_bit_uint32.rep_eq unset_bit_uint32.rep_eq flip_bit_uint32.rep_eq)+
instance
by (fact uint32.of_class_ring_bit_operations)
end
lift_definition uint32_of_nat :: ‹nat ⇒ uint32›
is word_of_nat .
lift_definition nat_of_uint32 :: ‹uint32 ⇒ nat›
is unat .
lift_definition uint32_of_int :: ‹int ⇒ uint32›
is word_of_int .
lift_definition int_of_uint32 :: ‹uint32 ⇒ int›
is uint .
context
includes integer.lifting
begin
lift_definition Uint32 :: ‹integer ⇒ uint32›
is word_of_int .
lift_definition integer_of_uint32 :: ‹uint32 ⇒ integer›
is uint .
end
global_interpretation uint32: word_type_copy_more Abs_uint32 Rep_uint32 signed_drop_bit_uint32
uint32_of_nat nat_of_uint32 uint32_of_int int_of_uint32 Uint32 integer_of_uint32
apply standard
apply (simp_all add: uint32_of_nat.rep_eq nat_of_uint32.rep_eq
uint32_of_int.rep_eq int_of_uint32.rep_eq
Uint32.rep_eq integer_of_uint32.rep_eq integer_eq_iff)
done
instantiation uint32 :: "{size, msb, set_bit, bit_comprehension}"
begin
lift_definition size_uint32 :: ‹uint32 ⇒ nat› is size .
lift_definition msb_uint32 :: ‹uint32 ⇒ bool› is msb .
text ‹Workaround: avoid name space clash by spelling out \<^text>‹lift_definition› explicitly.›
definition set_bit_uint32 :: ‹uint32 ⇒ nat ⇒ bool ⇒ uint32›
where set_bit_uint32_eq: ‹set_bit_uint32 a n b = (if b then Bit_Operations.set_bit else unset_bit) n a›
context
includes lifting_syntax
begin
lemma set_bit_uint32_transfer [transfer_rule]:
‹(cr_uint32 ===> (=) ===> (⟷) ===> cr_uint32) Generic_set_bit.set_bit Generic_set_bit.set_bit›
by (simp only: set_bit_eq [abs_def] set_bit_uint32_eq [abs_def]) transfer_prover
end
lift_definition set_bits_uint32 :: ‹(nat ⇒ bool) ⇒ uint32› is set_bits .
lift_definition set_bits_aux_uint32 :: ‹(nat ⇒ bool) ⇒ nat ⇒ uint32 ⇒ uint32› is set_bits_aux .
global_interpretation uint32: word_type_copy_misc Abs_uint32 Rep_uint32 signed_drop_bit_uint32
uint32_of_nat nat_of_uint32 uint32_of_int int_of_uint32 Uint32 integer_of_uint32 32 set_bits_aux_uint32
by (standard; transfer) simp_all
instance using uint32.of_class_bit_comprehension
uint32.of_class_set_bit
by simp_all standard
end
section ‹Code setup›
code_printing code_module Uint32 ⇀ (SML)
‹(* Test that words can handle numbers between 0 and 31 *)
val _ = if 5 <= Word.wordSize then () else raise (Fail ("wordSize less than 5"));
structure Uint32 : sig
val generic_set_bit : Word32.word -> IntInf.int -> bool -> Word32.word
val shiftl : Word32.word -> IntInf.int -> Word32.word
val shiftr : Word32.word -> IntInf.int -> Word32.word
val shiftr_signed : Word32.word -> IntInf.int -> Word32.word
val test_bit : Word32.word -> IntInf.int -> bool
end = struct
fun generic_set_bit x n b =
let val mask = Word32.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))
in if b then Word32.orb (x, mask)
else Word32.andb (x, Word32.notb mask)
end
fun shiftl x n =
Word32.<< (x, Word.fromLargeInt (IntInf.toLarge n))
fun shiftr x n =
Word32.>> (x, Word.fromLargeInt (IntInf.toLarge n))
fun shiftr_signed x n =
Word32.~>> (x, Word.fromLargeInt (IntInf.toLarge n))
fun test_bit x n =
Word32.andb (x, Word32.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word32.fromInt 0
end; (* struct Uint32 *)›
code_reserved (SML) Uint32
code_printing code_module Uint32 ⇀ (Haskell)
‹module Uint32(Int32, Word32) where
import Data.Int(Int32)
import Data.Word(Word32)›
code_reserved (Haskell) Uint32
text ‹
OCaml and Scala provide only signed 32bit numbers, so we use these and
implement sign-sensitive operations like comparisons manually.
›
code_printing code_module "Uint32" ⇀ (OCaml)
‹module Uint32 : sig
val less : int32 -> int32 -> bool
val less_eq : int32 -> int32 -> bool
val generic_set_bit : int32 -> Z.t -> bool -> int32
val shiftl : int32 -> Z.t -> int32
val shiftr : int32 -> Z.t -> int32
val shiftr_signed : int32 -> Z.t -> int32
val test_bit : int32 -> Z.t -> bool
end = struct
(* negative numbers have their highest bit set,
so they are greater than positive ones *)
let less x y =
if Int32.compare x Int32.zero < 0 then
Int32.compare y Int32.zero < 0 && Int32.compare x y < 0
else Int32.compare y Int32.zero < 0 || Int32.compare x y < 0;;
let less_eq x y =
if Int32.compare x Int32.zero < 0 then
Int32.compare y Int32.zero < 0 && Int32.compare x y <= 0
else Int32.compare y Int32.zero < 0 || Int32.compare x y <= 0;;
let generic_set_bit x n b =
let mask = Int32.shift_left Int32.one (Z.to_int n)
in if b then Int32.logor x mask
else Int32.logand x (Int32.lognot mask);;
let shiftl x n = Int32.shift_left x (Z.to_int n);;
let shiftr x n = Int32.shift_right_logical x (Z.to_int n);;
let shiftr_signed x n = Int32.shift_right x (Z.to_int n);;
let test_bit x n =
Int32.compare
(Int32.logand x (Int32.shift_left Int32.one (Z.to_int n)))
Int32.zero
<> 0;;
end;; (*struct Uint32*)›
code_reserved (OCaml) Uint32
code_printing code_module Uint32 ⇀ (Scala)
‹object Uint32 {
def less(x: Int, y: Int) : Boolean =
x < 0 match {
case true => y < 0 && x < y
case false => y < 0 || x < y
}
def less_eq(x: Int, y: Int) : Boolean =
x < 0 match {
case true => y < 0 && x <= y
case false => y < 0 || x <= y
}
def generic_set_bit(x: Int, n: BigInt, b: Boolean) : Int =
b match {
case true => x | (1 << n.intValue)
case false => x & (1 << n.intValue).unary_~
}
def shiftl(x: Int, n: BigInt) : Int = x << n.intValue
def shiftr(x: Int, n: BigInt) : Int = x >>> n.intValue
def shiftr_signed(x: Int, n: BigInt) : Int = x >> n.intValue
def test_bit(x: Int, n: BigInt) : Boolean =
(x & (1 << n.intValue)) != 0
} /* object Uint32 */›
code_reserved (Scala) Uint32
text ‹
OCaml's conversion from Big\_int to int32 demands that the value fits int a signed 32-bit integer.
The following justifies the implementation.
›
context
includes bit_operations_syntax
begin
definition Uint32_signed :: "integer ⇒ uint32"
where "Uint32_signed i = (if i < -(0x80000000) ∨ i ≥ 0x80000000 then undefined Uint32 i else Uint32 i)"
lemma Uint32_code [code]:
"Uint32 i =
(let i' = i AND 0xFFFFFFFF
in if bit i' 31 then Uint32_signed (i' - 0x100000000) else Uint32_signed i')"
including undefined_transfer and integer.lifting unfolding Uint32_signed_def
apply transfer
apply (subst word_of_int_via_signed)
apply (auto simp add: push_bit_of_1 mask_eq_exp_minus_1 word_of_int_via_signed cong del: if_cong)
done
lemma Uint32_signed_code [code]:
"Rep_uint32 (Uint32_signed i) =
(if i < -(0x80000000) ∨ i ≥ 0x80000000 then Rep_uint32 (undefined Uint32 i) else word_of_int (int_of_integer_symbolic i))"
unfolding Uint32_signed_def Uint32_def int_of_integer_symbolic_def
by(simp add: Abs_uint32_inverse)
end
text ‹
Avoid @{term Abs_uint32} in generated code, use @{term Rep_uint32'} instead.
The symbolic implementations for code\_simp use @{term Rep_uint32}.
The new destructor @{term Rep_uint32'} is executable.
As the simplifier is given the [code abstract] equations literally,
we cannot implement @{term Rep_uint32} directly, because that makes code\_simp loop.
If code generation raises Match, some equation probably contains @{term Rep_uint32}
([code abstract] equations for @{typ uint32} may use @{term Rep_uint32} because
these instances will be folded away.)
To convert @{typ "32 word"} values into @{typ uint32}, use @{term "Abs_uint32'"}.
›
definition Rep_uint32' where [simp]: "Rep_uint32' = Rep_uint32"
lemma Rep_uint32'_transfer [transfer_rule]:
"rel_fun cr_uint32 (=) (λx. x) Rep_uint32'"
unfolding Rep_uint32'_def by(rule uint32.rep_transfer)
lemma Rep_uint32'_code [code]: "Rep_uint32' x = (BITS n. bit x n)"
by transfer (simp add: set_bits_bit_eq)
lift_definition Abs_uint32' :: "32 word ⇒ uint32" is "λx :: 32 word. x" .
lemma Abs_uint32'_code [code]:
"Abs_uint32' x = Uint32 (integer_of_int (uint x))"
including integer.lifting by transfer simp
declare [[code drop: "term_of_class.term_of :: uint32 ⇒ _"]]
lemma term_of_uint32_code [code]:
defines "TR ≡ typerep.Typerep" and "bit0 ≡ STR ''Numeral_Type.bit0''"
shows
"term_of_class.term_of x =
Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint32.uint32.Abs_uint32'') (TR (STR ''fun'') [TR (STR ''Word.word'') [TR bit0 [TR bit0 [TR bit0 [TR bit0 [TR bit0 [TR (STR ''Numeral_Type.num1'') []]]]]]], TR (STR ''Uint32.uint32'') []]))
(term_of_class.term_of (Rep_uint32' x))"
by(simp add: term_of_anything)
code_printing
type_constructor uint32 ⇀
(SML) "Word32.word" and
(Haskell) "Uint32.Word32" and
(OCaml) "int32" and
(Scala) "Int" and
(Eval) "Word32.word"
| constant Uint32 ⇀
(SML) "Word32.fromLargeInt (IntInf.toLarge _)" and
(Haskell) "(Prelude.fromInteger _ :: Uint32.Word32)" and
(Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint32.Word32)" and
(Scala) "_.intValue"
| constant Uint32_signed ⇀
(OCaml) "Z.to'_int32"
| constant "0 :: uint32" ⇀
(SML) "(Word32.fromInt 0)" and
(Haskell) "(0 :: Uint32.Word32)" and
(OCaml) "Int32.zero" and
(Scala) "0"
| constant "1 :: uint32" ⇀
(SML) "(Word32.fromInt 1)" and
(Haskell) "(1 :: Uint32.Word32)" and
(OCaml) "Int32.one" and
(Scala) "1"
| constant "plus :: uint32 ⇒ _ " ⇀
(SML) "Word32.+ ((_), (_))" and
(Haskell) infixl 6 "+" and
(OCaml) "Int32.add" and
(Scala) infixl 7 "+"
| constant "uminus :: uint32 ⇒ _" ⇀
(SML) "Word32.~" and
(Haskell) "negate" and
(OCaml) "Int32.neg" and
(Scala) "!(- _)"
| constant "minus :: uint32 ⇒ _" ⇀
(SML) "Word32.- ((_), (_))" and
(Haskell) infixl 6 "-" and
(OCaml) "Int32.sub" and
(Scala) infixl 7 "-"
| constant "times :: uint32 ⇒ _ ⇒ _" ⇀
(SML) "Word32.* ((_), (_))" and
(Haskell) infixl 7 "*" and
(OCaml) "Int32.mul" and
(Scala) infixl 8 "*"
| constant "HOL.equal :: uint32 ⇒ _ ⇒ bool" ⇀
(SML) "!((_ : Word32.word) = _)" and
(Haskell) infix 4 "==" and
(OCaml) "(Int32.compare _ _ = 0)" and
(Scala) infixl 5 "=="
| class_instance uint32 :: equal ⇀
(Haskell) -
| constant "less_eq :: uint32 ⇒ _ ⇒ bool" ⇀
(SML) "Word32.<= ((_), (_))" and
(Haskell) infix 4 "<=" and
(OCaml) "Uint32.less'_eq" and
(Scala) "Uint32.less'_eq"
| constant "less :: uint32 ⇒ _ ⇒ bool" ⇀
(SML) "Word32.< ((_), (_))" and
(Haskell) infix 4 "<" and
(OCaml) "Uint32.less" and
(Scala) "Uint32.less"
| constant "Bit_Operations.not :: uint32 ⇒ _" ⇀
(SML) "Word32.notb" and
(Haskell) "Data'_Bits.complement" and
(OCaml) "Int32.lognot" and
(Scala) "_.unary'_~"
| constant "Bit_Operations.and :: uint32 ⇒ _" ⇀
(SML) "Word32.andb ((_),/ (_))" and
(Haskell) infixl 7 "Data_Bits..&." and
(OCaml) "Int32.logand" and
(Scala) infixl 3 "&"
| constant "Bit_Operations.or :: uint32 ⇒ _" ⇀
(SML) "Word32.orb ((_),/ (_))" and
(Haskell) infixl 5 "Data_Bits..|." and
(OCaml) "Int32.logor" and
(Scala) infixl 1 "|"
| constant "Bit_Operations.xor :: uint32 ⇒ _" ⇀
(SML) "Word32.xorb ((_),/ (_))" and
(Haskell) "Data'_Bits.xor" and
(OCaml) "Int32.logxor" and
(Scala) infixl 2 "^"
definition uint32_divmod :: "uint32 ⇒ uint32 ⇒ uint32 × uint32" where
"uint32_divmod x y =
(if y = 0 then (undefined ((div) :: uint32 ⇒ _) x (0 :: uint32), undefined ((mod) :: uint32 ⇒ _) x (0 :: uint32))
else (x div y, x mod y))"
definition uint32_div :: "uint32 ⇒ uint32 ⇒ uint32"
where "uint32_div x y = fst (uint32_divmod x y)"
definition uint32_mod :: "uint32 ⇒ uint32 ⇒ uint32"
where "uint32_mod x y = snd (uint32_divmod x y)"
lemma div_uint32_code [code]: "x div y = (if y = 0 then 0 else uint32_div x y)"
including undefined_transfer unfolding uint32_divmod_def uint32_div_def
by transfer (simp add: word_div_def)
lemma mod_uint32_code [code]: "x mod y = (if y = 0 then x else uint32_mod x y)"
including undefined_transfer unfolding uint32_mod_def uint32_divmod_def
by transfer (simp add: word_mod_def)
definition uint32_sdiv :: "uint32 ⇒ uint32 ⇒ uint32"
where [code del]:
"uint32_sdiv x y =
(if y = 0 then undefined ((div) :: uint32 ⇒ _) x (0 :: uint32)
else Abs_uint32 (Rep_uint32 x sdiv Rep_uint32 y))"
definition div0_uint32 :: "uint32 ⇒ uint32"
where [code del]: "div0_uint32 x = undefined ((div) :: uint32 ⇒ _) x (0 :: uint32)"
declare [[code abort: div0_uint32]]
definition mod0_uint32 :: "uint32 ⇒ uint32"
where [code del]: "mod0_uint32 x = undefined ((mod) :: uint32 ⇒ _) x (0 :: uint32)"
declare [[code abort: mod0_uint32]]
lemma uint32_divmod_code [code]:
"uint32_divmod x y =
(if 0x80000000 ≤ y then if x < y then (0, x) else (1, x - y)
else if y = 0 then (div0_uint32 x, mod0_uint32 x)
else let q = push_bit 1 (uint32_sdiv (drop_bit 1 x) y);
r = x - q * y
in if r ≥ y then (q + 1, r - y) else (q, r))"
including undefined_transfer unfolding uint32_divmod_def uint32_sdiv_def div0_uint32_def mod0_uint32_def
less_eq_uint32.rep_eq
apply transfer
apply (simp add: divmod_via_sdivmod push_bit_eq_mult)
done
lemma uint32_sdiv_code [code]:
"Rep_uint32 (uint32_sdiv x y) =
(if y = 0 then Rep_uint32 (undefined ((div) :: uint32 ⇒ _) x (0 :: uint32))
else Rep_uint32 x sdiv Rep_uint32 y)"
unfolding uint32_sdiv_def by(simp add: Abs_uint32_inverse)
text ‹
Note that we only need a translation for signed division, but not for the remainder
because @{thm uint32_divmod_code} computes both with division only.
›
code_printing
constant uint32_div ⇀
(SML) "Word32.div ((_), (_))" and
(Haskell) "Prelude.div"
| constant uint32_mod ⇀
(SML) "Word32.mod ((_), (_))" and
(Haskell) "Prelude.mod"
| constant uint32_divmod ⇀
(Haskell) "divmod"
| constant uint32_sdiv ⇀
(OCaml) "Int32.div" and
(Scala) "_ '/ _"
global_interpretation uint32: word_type_copy_target_language Abs_uint32 Rep_uint32 signed_drop_bit_uint32
uint32_of_nat nat_of_uint32 uint32_of_int int_of_uint32 Uint32 integer_of_uint32 32 set_bits_aux_uint32 32 31
defines uint32_test_bit = uint32.test_bit
and uint32_shiftl = uint32.shiftl
and uint32_shiftr = uint32.shiftr
and uint32_sshiftr = uint32.sshiftr
and uint32_generic_set_bit = uint32.gen_set_bit
by standard simp_all
code_printing constant uint32_test_bit ⇀
(SML) "Uint32.test'_bit" and
(Haskell) "Data'_Bits.testBitBounded" and
(OCaml) "Uint32.test'_bit" and
(Scala) "Uint32.test'_bit" and
(Eval) "(fn w => fn n => if n < 0 orelse 32 <= n then raise (Fail \"argument to uint32'_test'_bit out of bounds\") else Uint32.test'_bit w n)"
code_printing constant uint32_generic_set_bit ⇀
(SML) "Uint32.generic'_set'_bit" and
(Haskell) "Data'_Bits.genericSetBitBounded" and
(OCaml) "Uint32.generic'_set'_bit" and
(Scala) "Uint32.generic'_set'_bit" and
(Eval) "(fn w => fn n => fn b => if n < 0 orelse 32 <= n then raise (Fail \"argument to uint32'_generic'_set'_bit out of bounds\") else Uint32.generic'_set'_bit w n b)"
code_printing constant uint32_shiftl ⇀
(SML) "Uint32.shiftl" and
(Haskell) "Data'_Bits.shiftlBounded" and
(OCaml) "Uint32.shiftl" and
(Scala) "Uint32.shiftl" and
(Eval) "(fn w => fn i => if i < 0 orelse i >= 32 then raise Fail \"argument to uint32'_shiftl out of bounds\" else Uint32.shiftl w i)"
code_printing constant uint32_shiftr ⇀
(SML) "Uint32.shiftr" and
(Haskell) "Data'_Bits.shiftrBounded" and
(OCaml) "Uint32.shiftr" and
(Scala) "Uint32.shiftr" and
(Eval) "(fn w => fn i => if i < 0 orelse i >= 32 then raise Fail \"argument to uint32'_shiftr out of bounds\" else Uint32.shiftr w i)"
code_printing constant uint32_sshiftr ⇀
(SML) "Uint32.shiftr'_signed" and
(Haskell)
"(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint32.Int32) _)) :: Uint32.Word32)" and
(OCaml) "Uint32.shiftr'_signed" and
(Scala) "Uint32.shiftr'_signed" and
(Eval) "(fn w => fn i => if i < 0 orelse i >= 32 then raise Fail \"argument to uint32'_shiftr'_signed out of bounds\" else Uint32.shiftr'_signed w i)"
context
includes bit_operations_syntax
begin
lemma uint32_msb_test_bit: "msb x ⟷ bit (x :: uint32) 31"
by transfer (simp add: msb_word_iff_bit)
lemma msb_uint32_code [code]: "msb x ⟷ uint32_test_bit x 31"
by (simp add: uint32.test_bit_def uint32_msb_test_bit)
lemma uint32_of_int_code [code]:
"uint32_of_int i = Uint32 (integer_of_int i)"
including integer.lifting by transfer simp
lemma int_of_uint32_code [code]:
"int_of_uint32 x = int_of_integer (integer_of_uint32 x)"
including integer.lifting by transfer simp
lemma uint32_of_nat_code [code]:
"uint32_of_nat = uint32_of_int ∘ int"
by transfer (simp add: fun_eq_iff)
lemma nat_of_uint32_code [code]:
"nat_of_uint32 x = nat_of_integer (integer_of_uint32 x)"
unfolding integer_of_uint32_def including integer.lifting by transfer simp
definition integer_of_uint32_signed :: "uint32 ⇒ integer"
where
"integer_of_uint32_signed n = (if bit n 31 then undefined integer_of_uint32 n else integer_of_uint32 n)"
lemma integer_of_uint32_signed_code [code]:
"integer_of_uint32_signed n =
(if bit n 31 then undefined integer_of_uint32 n else integer_of_int (uint (Rep_uint32' n)))"
by (simp add: integer_of_uint32_signed_def integer_of_uint32_def)
lemma integer_of_uint32_code [code]:
"integer_of_uint32 n =
(if bit n 31 then integer_of_uint32_signed (n AND 0x7FFFFFFF) OR 0x80000000 else integer_of_uint32_signed n)"
proof -
have ‹integer_of_uint32_signed (n AND 0x7FFFFFFF) OR 0x80000000 = Bit_Operations.set_bit 31 (integer_of_uint32_signed (take_bit 31 n))›
by (simp add: take_bit_eq_mask set_bit_eq_or push_bit_eq_mult mask_eq_exp_minus_1)
moreover have ‹integer_of_uint32 n = Bit_Operations.set_bit 31 (integer_of_uint32 (take_bit 31 n))› if ‹bit n 31›
proof (rule bit_eqI)
fix m
from that show ‹bit (integer_of_uint32 n) m = bit (Bit_Operations.set_bit 31 (integer_of_uint32 (take_bit 31 n))) m› for m
including integer.lifting by transfer (auto simp add: bit_simps dest: bit_imp_le_length)
qed
ultimately show ?thesis
by simp (simp add: integer_of_uint32_signed_def bit_simps)
qed
end
code_printing
constant "integer_of_uint32" ⇀
(SML) "IntInf.fromLarge (Word32.toLargeInt _) : IntInf.int" and
(Haskell) "Prelude.toInteger"
| constant "integer_of_uint32_signed" ⇀
(OCaml) "Z.of'_int32" and
(Scala) "BigInt"
section ‹Quickcheck setup›
definition uint32_of_natural :: "natural ⇒ uint32"
where "uint32_of_natural x ≡ Uint32 (integer_of_natural x)"
instantiation uint32 :: "{random, exhaustive, full_exhaustive}" begin
definition "random_uint32 ≡ qc_random_cnv uint32_of_natural"
definition "exhaustive_uint32 ≡ qc_exhaustive_cnv uint32_of_natural"
definition "full_exhaustive_uint32 ≡ qc_full_exhaustive_cnv uint32_of_natural"
instance ..
end
instantiation uint32 :: narrowing begin
interpretation quickcheck_narrowing_samples
"λi. let x = Uint32 i in (x, 0xFFFFFFFF - x)" "0"
"Typerep.Typerep (STR ''Uint32.uint32'') []" .
definition "narrowing_uint32 d = qc_narrowing_drawn_from (narrowing_samples d) d"
declare [[code drop: "partial_term_of :: uint32 itself ⇒ _"]]
lemmas partial_term_of_uint32 [code] = partial_term_of_code
instance ..
end
end